Solveeit Logo

Question

Mathematics Question on integral

Evaluate : (exloga+ealogx+ealoga)dx\int\left(e^{x\,log\,a} + e^{a\,log\,x} + e^{a\,log\,a} \right)dx

A

axloga+xa+1a+1+aax+c\frac{a^{x}}{log \,a}+\frac{x^{a+1}}{a+1} + a^{a}x + c

B

axloga+xa+1a1+axa+c\frac{a^{x}}{log \,a}+\frac{x^{a+1}}{a-1} + a x^{a} + c

C

axloga+xa+1a+1+axa+c\frac{a^{x}}{log\, a}+\frac{x^{a+1}}{a+1} + a x^{a} + c

D

axlogaxa+1a+1+aax+c\frac{a^{x}}{log \,a}-\frac{x^{a+1}}{a+1} + a^{a} x + c

Answer

axloga+xa+1a+1+aax+c\frac{a^{x}}{log \,a}+\frac{x^{a+1}}{a+1} + a^{a}x + c

Explanation

Solution

We have,I=(exloga+ealogx+ealoga)dxI =\int\left(e^{x\,log\,a}+e^{a\,log\,x} +e^{a\,log\,a}\right) dx Then,I=(elogax+elogxa+elogaa)dx I =\int \left(e^{log\,a^x} +e^{log\,x^a} +e^{log\,a^a}\right)dx I=(ax+xa+aa)dx[elogλ=λ]\Rightarrow I = \int\left(a^{x} +x^{a} +a^{a}\right)dx \left[\because e^{log\lambda}=\lambda\right] axdx+xadx+aadx\Rightarrow\int a^{x}dx+\int x^{a}dx + \int a^{a}dx I=axloga+xa+1a+1+aax+C\Rightarrow I =\frac{a^{x}}{loga}+\frac{x^{a+1}}{a+1} + a^{a } x +C