Question
Question: Evaluate: $\int \frac{x^2-x^3}{(x+1)(x^3+x^2+x)^{3/2}} dx$...
Evaluate: ∫(x+1)(x3+x2+x)3/2x2−x3dx

2\left(\frac{\sqrt{x}}{\sqrt{x^2+x+1}} - \arccos\left(\frac{\sqrt{x^2+x+1}}{x+1}\right)\right) + C
Solution
To evaluate the integral I=∫(x+1)(x3+x2+x)3/2x2−x3dx, we follow these steps:
-
Simplify the integrand: The term x3+x2+x can be factored as x(x2+x+1). So the integral becomes: I=∫(x+1)(x(x2+x+1))3/2x2−x3dx I=∫(x+1)x3/2(x2+x+1)3/2x2(1−x)dx I=∫(x+1)(x2+x+1)3/2x2−3/2(1−x)dx I=∫(x+1)(x2+x+1)3/2x1/2(1−x)dx
-
Apply the substitution x=t1: If x=t1, then dx=−t21dt. Substitute these into the integral: I=∫(1/t+1)((1/t)2+(1/t)+1)3/2(1/t)1/2(1−1/t)(−t21)dt I=∫(t1+t)(t21+t+t2)3/2t1(tt−1)(−t21)dt I=∫t1+t⋅t3(1+t+t2)3/2t3/2t−1(−t21)dt I=∫t3/2t−1⋅1+tt⋅(1+t+t2)3/2t3(−t21)dt I=∫(1+t)(1+t+t2)3/2(t−1)t1+3−3/2−2(−1)dt I=∫(1+t)(1+t+t2)3/2(t−1)t1/2(−1)dt I=∫(1+t)(1+t+t2)3/2(1−t)t1/2dt
-
Recognize a derivative for substitution: Consider the derivative of the function f(t)=1+t+t21+t. Using the quotient rule dtd(vu)=v2u′v−uv′: u=1+t⟹u′=1 v=1+t+t2⟹v′=21+t+t21(1+2t) f′(t)=1+t+t21⋅1+t+t2−(1+t)21+t+t21+2t f′(t)=2(1+t+t2)3/22(1+t+t2)−(1+t)(1+2t) f′(t)=2(1+t+t2)3/22+2t+2t2−(1+3t+2t2) f′(t)=2(1+t+t2)3/21−t So, (1+t+t2)3/21−t=2f′(t).
-
Rewrite the integral using f′(t): The integral is I=∫(1+t)t1/2⋅(1+t+t2)3/21−tdt I=∫1+tt1/2⋅2f′(t)dt Let u=f(t)=1+t+t21+t. Then du=f′(t)dt. So, I=2∫1+tt1/2du.
-
Express 1+tt1/2 in terms of u: From u=1+t+t21+t, we have u2=1+t+t2(1+t)2. Consider 1−u21=1−(1+t)21+t+t2=(1+t)2(1+t)2−(1+t+t2) =(1+t)21+2t+t2−1−t−t2=(1+t)2t. Taking the square root: 1−u21=1+tt. This simplifies to uu2−1=1+tt.
-
Substitute into the integral and evaluate: I=2∫uu2−1du. Let u=secθ. Then du=secθtanθdθ. u2−1=sec2θ−1=tan2θ=tanθ (assuming tanθ≥0). I=2∫secθtanθ(secθtanθ)dθ I=2∫tan2θdθ Using the identity tan2θ=sec2θ−1: I=2∫(sec2θ−1)dθ I=2(tanθ−θ)+C.
-
Substitute back to u and then to x: From u=secθ, we have θ=arcsecu. tanθ=u2−1. I=2(u2−1−arcsecu)+C.
Now substitute u=1+t+t21+t: u2−1=1+t+t2t. I=2(1+t+t2t−arcsec(1+t+t21+t))+C.
Finally, substitute t=x1: t=x1. 1+t+t2=1+x1+x21=x2x2+x+1=∣x∣x2+x+1. Since x3+x2+x is under a square root, x>0. So ∣x∣=x. 1+t+t2t=x2+x+1/x1/x=xx2+x+1x=x2+x+1x.
1+t+t21+t=1+1/x+1/x21+1/x=x2+x+1/x(x+1)/x=x2+x+1x+1.
So, I=2(x2+x+1x−arcsec(x2+x+1x+1))+C. Using the identity arcsec(y)=arccos(1/y): I=2(x2+x+1x−arccos(x+1x2+x+1))+C.
The final answer is 2(x2+x+1x−arccos(x+1x2+x+1))+C.
Subject: Mathematics Chapter: Integrals Topic: Integration by Substitution Difficulty: Hard Question Type: single_choice