Solveeit Logo

Question

Question: Evaluate $\int \frac{(\sqrt[3]{x + \sqrt{2 - x^2}})(\sqrt[6]{1 - x\sqrt{2 - x^2}})dx}{\sqrt[3]{1 - x...

Evaluate (x+2x23)(1x2x26)dx1x23,x(0,1):\int \frac{(\sqrt[3]{x + \sqrt{2 - x^2}})(\sqrt[6]{1 - x\sqrt{2 - x^2}})dx}{\sqrt[3]{1 - x^2}}, x \in (0, 1):

Answer

21/6x+C2^{1/6} x + C

Explanation

Solution

To evaluate the integral (x+2x23)(1x2x26)dx1x23\int \frac{(\sqrt[3]{x + \sqrt{2 - x^2}})(\sqrt[6]{1 - x\sqrt{2 - x^2}})dx}{\sqrt[3]{1 - x^2}}, for x(0,1)x \in (0, 1), we use a trigonometric substitution.

1. Substitution: Given the term 2x2\sqrt{2 - x^2}, a suitable substitution is x=2sinθx = \sqrt{2} \sin \theta. Then dx=2cosθdθdx = \sqrt{2} \cos \theta d\theta.

For x(0,1)x \in (0, 1): 0<2sinθ<1    0<sinθ<120 < \sqrt{2} \sin \theta < 1 \implies 0 < \sin \theta < \frac{1}{\sqrt{2}}. This implies θ(0,π4)\theta \in (0, \frac{\pi}{4}).

2. Transform the terms in the integrand:

  • 2x2=2(2sinθ)2=22sin2θ=2(1sin2θ)=2cos2θ\sqrt{2 - x^2} = \sqrt{2 - (\sqrt{2} \sin \theta)^2} = \sqrt{2 - 2 \sin^2 \theta} = \sqrt{2(1 - \sin^2 \theta)} = \sqrt{2 \cos^2 \theta}. Since θ(0,π4)\theta \in (0, \frac{\pi}{4}), cosθ>0\cos \theta > 0, so 2cos2θ=2cosθ\sqrt{2 \cos^2 \theta} = \sqrt{2} \cos \theta.

  • Numerator term 1: x+2x23=2sinθ+2cosθ3=2(sinθ+cosθ)3=(2)1/3(sinθ+cosθ)1/3=21/6(sinθ+cosθ)1/3\sqrt[3]{x + \sqrt{2 - x^2}} = \sqrt[3]{\sqrt{2} \sin \theta + \sqrt{2} \cos \theta} = \sqrt[3]{\sqrt{2}(\sin \theta + \cos \theta)} = (\sqrt{2})^{1/3} (\sin \theta + \cos \theta)^{1/3} = 2^{1/6} (\sin \theta + \cos \theta)^{1/3}.

  • Numerator term 2: 1x2x26=1(2sinθ)(2cosθ)6=12sinθcosθ6=1sin(2θ)6\sqrt[6]{1 - x\sqrt{2 - x^2}} = \sqrt[6]{1 - (\sqrt{2} \sin \theta)(\sqrt{2} \cos \theta)} = \sqrt[6]{1 - 2 \sin \theta \cos \theta} = \sqrt[6]{1 - \sin(2\theta)}. We know that 1sin(2θ)=sin2θ+cos2θ2sinθcosθ=(cosθsinθ)21 - \sin(2\theta) = \sin^2 \theta + \cos^2 \theta - 2 \sin \theta \cos \theta = (\cos \theta - \sin \theta)^2. So, 1sin(2θ)6=(cosθsinθ)26=(cosθsinθ)2/6=(cosθsinθ)1/3\sqrt[6]{1 - \sin(2\theta)} = \sqrt[6]{(\cos \theta - \sin \theta)^2} = (\cos \theta - \sin \theta)^{2/6} = (\cos \theta - \sin \theta)^{1/3}. Since θ(0,π4)\theta \in (0, \frac{\pi}{4}), cosθ>sinθ\cos \theta > \sin \theta, so cosθsinθ>0\cos \theta - \sin \theta > 0.

  • Denominator term: 1x23=1(2sinθ)23=12sin2θ3=cos(2θ)3\sqrt[3]{1 - x^2} = \sqrt[3]{1 - (\sqrt{2} \sin \theta)^2} = \sqrt[3]{1 - 2 \sin^2 \theta} = \sqrt[3]{\cos(2\theta)}. Since θ(0,π4)\theta \in (0, \frac{\pi}{4}), 2θ(0,π2)2\theta \in (0, \frac{\pi}{2}), so cos(2θ)>0\cos(2\theta) > 0.

3. Substitute into the integral: The product of the numerator terms is: 21/6(sinθ+cosθ)1/3(cosθsinθ)1/32^{1/6} (\sin \theta + \cos \theta)^{1/3} \cdot (\cos \theta - \sin \theta)^{1/3} =21/6[(sinθ+cosθ)(cosθsinθ)]1/3= 2^{1/6} [(\sin \theta + \cos \theta)(\cos \theta - \sin \theta)]^{1/3} =21/6[cos2θsin2θ]1/3= 2^{1/6} [\cos^2 \theta - \sin^2 \theta]^{1/3} =21/6[cos(2θ)]1/3= 2^{1/6} [\cos(2\theta)]^{1/3}.

Now, substitute all terms back into the integral: I=21/6[cos(2θ)]1/3[cos(2θ)]1/3(2cosθ)dθI = \int \frac{2^{1/6} [\cos(2\theta)]^{1/3}}{[\cos(2\theta)]^{1/3}} (\sqrt{2} \cos \theta) d\theta I=21/62cosθdθI = \int 2^{1/6} \cdot \sqrt{2} \cos \theta d\theta I=21/621/2cosθdθI = \int 2^{1/6} \cdot 2^{1/2} \cos \theta d\theta I=21/6+3/6cosθdθI = \int 2^{1/6 + 3/6} \cos \theta d\theta I=24/6cosθdθI = \int 2^{4/6} \cos \theta d\theta I=22/3cosθdθI = \int 2^{2/3} \cos \theta d\theta I=22/3sinθ+CI = 2^{2/3} \sin \theta + C

4. Substitute back to xx: From x=2sinθx = \sqrt{2} \sin \theta, we have sinθ=x2\sin \theta = \frac{x}{\sqrt{2}}. I=22/3(x2)+CI = 2^{2/3} \left(\frac{x}{\sqrt{2}}\right) + C I=22/3x21/2+CI = 2^{2/3} \frac{x}{2^{1/2}} + C I=22/31/2x+CI = 2^{2/3 - 1/2} x + C I=2(43)/6x+CI = 2^{(4-3)/6} x + C I=21/6x+CI = 2^{1/6} x + C

The final answer is 21/6x+C\boxed{2^{1/6} x + C}.

Explanation of the solution:

The integral is simplified by the substitution x=2sinθx = \sqrt{2} \sin \theta. This transforms terms involving 2x2\sqrt{2-x^2} into trigonometric functions. Key identities used are 12sin2θ=cos(2θ)1 - 2\sin^2\theta = \cos(2\theta) and 1sin(2θ)=(cosθsinθ)21 - \sin(2\theta) = (\cos\theta - \sin\theta)^2. The terms in the numerator combine to 21/6(cos(2θ))1/32^{1/6}(\cos(2\theta))^{1/3}, which cancels with the denominator. The integral then simplifies to 22/3cosθdθ=22/3sinθ+C2^{2/3} \int \cos\theta d\theta = 2^{2/3} \sin\theta + C. Substituting back sinθ=x/2\sin\theta = x/\sqrt{2} yields the final result 21/6x+C2^{1/6} x + C.