Solveeit Logo

Question

Mathematics Question on integral

Evaluate : x3+xx49dx\int\frac{x^{3}+x}{x^{4}-9}dx

A

14logx49+112logx2+3x23+C\frac{1}{4}log \left|x^{4}-9\right| +\frac{1}{12}log\left|\frac{x^{2}+3}{x^{2}-3}\right| +C

B

14logx49112logx23x2+3+C\frac{1}{4}log \left|x^{4}-9\right| -\frac{1}{12}log\left|\frac{x^{2}-3}{x^{2}+3}\right| +C

C

14logx49+112logx23x2+3+C\frac{1}{4}log \left|x^{4}-9\right| +\frac{1}{12}log\left|\frac{x^{2}-3}{x^{2}+3}\right| +C

D

None of these

Answer

14logx49+112logx23x2+3+C\frac{1}{4}log \left|x^{4}-9\right| +\frac{1}{12}log\left|\frac{x^{2}-3}{x^{2}+3}\right| +C

Explanation

Solution

Let I=x3+xx49dxI = \int\frac{x^{3}+x}{x^{4}-9} dx I=x3x49dx+xx49dx=I1+I2+C(say) \Rightarrow I = \int \frac{x^{3}}{x^{4}-9} dx + \int\frac{x}{x^{4}-9}dx=I_{1}+I_{2}+C\left(say\right), where I1=x3x49dx I_{1} =\int \frac{x^{3}}{x^{4}-9}dx and I2=xx49dxI_{2} = \int \frac{x}{x^{4}-9}dx putting x49=tx^{4}-9=t in I14x3dx=dtI_{1} \Rightarrow4x^{3}dx=dt , we get I1=141tdt=14logx49 I_{1} = \frac{1}{4}\int\frac{1}{t}dt = \frac{1}{4}log \left|x^{4}-9\right| Now,I2=xx49dx=x(x2)232dx I_{2}=\int\frac{x}{x^{4}-9}dx = \int \frac{x}{\left(x^{2}\right)^{2}-3^{2}}dx putting x2=t2xdx=dtx^{2}=t \Rightarrow 2x dx = dt, we get I2=12dtt232=1212×3logt3t+3=112logx23x2+3 I_{2}=\frac{1}{2}\int\frac{dt}{t^{2}-3^{2}} = \frac{1}{2}\cdot\frac{1}{2\times3} log\left|\frac{t-3}{t+3}\right| = \frac{1}{12} log \left|\frac{x^{2}-3}{x^{2}+3}\right| Hence, I=14logx49+112logx23x2+3+CI= \frac{1}{4}log \left|x^{4}-9\right| +\frac{1}{12}log\left|\frac{x^{2}-3}{x^{2}+3}\right| +C