Question
Mathematics Question on integral
Evaluate : ∫x4−9x3+xdx
A
41logx4−9+121logx2−3x2+3+C
B
41logx4−9−121logx2+3x2−3+C
C
41logx4−9+121logx2+3x2−3+C
D
None of these
Answer
41logx4−9+121logx2+3x2−3+C
Explanation
Solution
Let I=∫x4−9x3+xdx ⇒I=∫x4−9x3dx+∫x4−9xdx=I1+I2+C(say), where I1=∫x4−9x3dx and I2=∫x4−9xdx putting x4−9=t in I1⇒4x3dx=dt , we get I1=41∫t1dt=41logx4−9 Now,I2=∫x4−9xdx=∫(x2)2−32xdx putting x2=t⇒2xdx=dt, we get I2=21∫t2−32dt=21⋅2×31logt+3t−3=121logx2+3x2−3 Hence, I=41logx4−9+121logx2+3x2−3+C