Question
Mathematics Question on Integrals of Some Particular Functions
Evaluate ∫x4+16x2+4dx.
A
221tan−1(2x2x2−4)+c
B
221tan−1(22x2−4)+c
C
221tan−1(x2x2−4)+c
D
None of the above
Answer
221tan−1(2x2x2−4)+c
Explanation
Solution
Let I=∫x4+16x2+4dx
=∫x2+x2161+x24
dx=∫(x−x4)2+81+x24dx
Putting x−x4=t
So that (1+x24)dx=dt
∴I=∫t2+(22)2dt
⇒221tan−1(22t)+C
⇒I=221tan−1(22x−x4)+C
=221tan−1(2x2x2−4)+C