Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Evaluate x2+4x4+16dx.\int \frac{x^{2}+4}{x^{4}+16}dx.

A

122tan1(x242x2)+c\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x^{2}-4}{2x\sqrt{2}}\right)+c

B

122tan1(x2422)+c\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x^{2}-4}{2\sqrt{2}}\right)+c

C

122tan1(x24x2)+c\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x^{2}-4}{x\sqrt{2}}\right)+c

D

None of the above

Answer

122tan1(x242x2)+c\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x^{2}-4}{2x\sqrt{2}}\right)+c

Explanation

Solution

Let I=x2+4x4+16dxI=\int \frac{x^{2}+4}{x^{4}+16} d x
=1+4x2x2+16x2=\int \frac{1+\frac{4}{x^{2}}}{x^{2}+\frac{16}{x^{2}}}
dx=1+4x2(x4x)2+8dxd x=\int \frac{1+\frac{4}{x^{2}}}{\left(x-\frac{4}{x}\right)^{2}+8} d x
Putting x4x=tx-\frac{4}{x}=t
So that (1+4x2)dx=dt\left(1+\frac{4}{x^{2}}\right) d x=d t
I=dtt2+(22)2\therefore I=\int \frac{d t}{t^{2}+(2 \sqrt{2})^{2}}
122tan1(t22)+C\Rightarrow \frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{t}{2 \sqrt{2}}\right)+C
I=122tan1(x4x22)+C\Rightarrow I=\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{x-\frac{4}{x}}{2 \sqrt{2}}\right)+C
=122tan1(x242x2)+C=\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{x^{2}-4}{2 x \sqrt{2}}\right)+C