Question
Mathematics Question on integral
Evaluate : ∫sin4xsinxdx
−81log1−sinx1+sinx+421log1−2sinx1+2sinx+C
81log1−sinx1+sinx−421log1−2sinx1+2sinx+C
−81log1−sinx1+sinx+421log1+2sinx1−2sinx+C
None of these
−81log1−sinx1+sinx+421log1−2sinx1+2sinx+C
Solution
We have, I=∫sin4xsinxdx=∫2sin2xcos2xsinxdx =∫4sinxcosxcos2xsinxdx ⇒I=41∫cosxcos2x1dx=41∫cos2xcos2xcosxdx ⇒I=41∫(1−sin2x)(1−2sin2x)cosxdx puttingsinx=t⇒cosxdx=dt, we get I=41∫(1−t2)(1−2t2)dt Lett2=y. Then, (1−t2)(1−2t2)1=(1−y)(1−2y)1 and (1−y)(1−2y)1=1−yA+1−2yB. ⇒1=A(1−2y)+B(1−y).......(i) Putting y=1andy=21respectivelyin(i),wegetA=−1andB=2 ∴(1−y)(1−2y)1=−1−y1+1−2y2 ⇒(1−t2)(1−2t2)1=−1−t21+1−2t22 ⇒I=41∫(−1−t21+1−2t22)dt ⇒I=−41⋅21log1−t1+t+21⋅221log1−2t1+2t+C ⇒I=−811−sinx1+sinx+421log1−2sinx1+2sinx+C