Solveeit Logo

Question

Mathematics Question on integral

Evaluate: sin2xsin(xπ3)sin(x+π3)dx\int\frac{sin \,2x}{sin\left(x -\frac{\pi}{3}\right) sin\left(x+\frac{\pi}{3}\right)} dx

A

logsin(x+π3)logsin(xπ3)+Clog\left|sin\left(x+\frac{\pi }{3}\right) \right|-log \left|sin\left(x-\frac{\pi }{3}\right) \right| + C

B

logsin(x+π3)+logsin(xπ3)+Clog\left|sin\left(x+\frac{\pi }{3}\right) \right|+log \left|sin\left(x-\frac{\pi }{3}\right) \right| + C

C

logsin(xπ3)logsin(x+π3)+Clog\left|sin\left(x-\frac{\pi }{3}\right) \right|-log \left|sin\left(x+\frac{\pi }{3}\right) \right| + C

D

None of these

Answer

logsin(x+π3)+logsin(xπ3)+Clog\left|sin\left(x+\frac{\pi }{3}\right) \right|+log \left|sin\left(x-\frac{\pi }{3}\right) \right| + C

Explanation

Solution

Let I=sin2xsin(xπ3)sin(x+π3)dxI = \int\frac{sin\, 2x}{sin\left(x -\frac{\pi}{3}\right) sin\left(x+\frac{\pi}{3}\right)} dx. then, I = \int\frac{sin\left\\{\left(x-\frac{\pi}{3}\right) + \left(x+\frac{\pi }{3}\right)\right\\}}{sin\left(x-\frac{\pi }{3}\right) sin \left(x+\frac{\pi }{3}\right)} dx \Rightarrow I = \int \frac{\left\\{sin\left(x-\frac{\pi }{3}\right) cos \left(x+\frac{\pi }{3}\right) + cos\left(x-\frac{\pi }{3}\right) sin\left(x+\frac{\pi }{3}\right)\right\\}}{sin\left(x-\frac{\pi }{3}\right) sin\left(x+\frac{\pi }{3}\right)} dx \Rightarrow I=\int\left\\{cot\left(x+\frac{\pi }{3}\right)+ cot\left(x-\frac{\pi }{3}\right)\right\\}dx I=logsin(x+π3)+logsin(xπ3)+C\Rightarrow I = log\left|sin\left(x+\frac{\pi \:}{3}\right)\:\right|+log\:\left|sin\left(x-\frac{\pi \:}{3}\right)\:\right|\:+\:C