Solveeit Logo

Question

Question: Evaluate \(\int {{e^x}\sec x\left( {1 + \tan x} \right)dx} \)...

Evaluate exsecx(1+tanx)dx\int {{e^x}\sec x\left( {1 + \tan x} \right)dx}

Explanation

Solution

We will simplify the expression by multiplying secx\sec x and inside the brackets to form ex(secx+secxtanx)dx\int {{e^x}\left( {\sec x + \sec x\tan x} \right)dx} , which is of the form, ekx(kf(x)+f(x))dx\int {{e^{kx}}\left( {kf\left( x \right) + f'\left( x \right)} \right)dx} . Now, the value of ekx(kf(x)+f(x))dx\int {{e^{kx}}\left( {kf\left( x \right) + f'\left( x \right)} \right)dx} is ekxf(x)+c{e^{kx}}f\left( x \right) + c. Hence, substitute the corresponding values to get the required answer.

Complete step-by-step answer:
We have to find the value of exsecx(1+tanx)dx\int {{e^x}\sec x\left( {1 + \tan x} \right)dx}
First of all, multiply secx\sec x and inside the brackets to get,
ex(secx+secxtanx)dx\int {{e^x}\left( {\sec x + \sec x\tan x} \right)dx}
Now, we know that ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x
This implies we have the integral of the form,
ekx(kf(x)+f(x))dx\int {{e^{kx}}\left( {kf\left( x \right) + f'\left( x \right)} \right)dx} , where k=1k = 1 and f(x)=secxf\left( x \right) = \sec x
Also, the value of the integral ekx(kf(x)+f(x))dx\int {{e^{kx}}\left( {kf\left( x \right) + f'\left( x \right)} \right)dx} is equal to ekxf(x)+c{e^{kx}}f\left( x \right) + c, where cc is an arbitrary constant.
Hence, the value of ex(secx+secxtanx)dx\int {{e^x}\left( {\sec x + \sec x\tan x} \right)dx} is exsecx+c{e^x}\sec x + c

Note: Do not apply bi-part directly in this question as it will get difficult to solve. Convert the given expression in the form of the known known formula, that is, ekx(kf(x)+f(x))dx=ekxf(x)+c\int {{e^{kx}}\left( {kf\left( x \right) + f'\left( x \right)} \right)dx} = {e^{kx}}f\left( x \right) + c. One must know the formulas of differentiation and integration to do these types of questions correctly.