Solveeit Logo

Question

Question: Evaluate \(\int {{e^x}(\dfrac{{1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})\sqrt {1 - {x^{2n}}} }})} d...

Evaluate ex(1+nxn1x2n(1xn)1x2n)dx\int {{e^x}(\dfrac{{1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})\sqrt {1 - {x^{2n}}} }})} dx
A) ex(1x2n)1+xn+c\dfrac{{{e^x}(1 - {x^{2n}})}}{{1 + {x^n}}} + c
B) ex1x2n1+xn+c\dfrac{{{e^x}\sqrt {1 - {x^{2n}}} }}{{1 + {x^n}}} + c $$$$
C) ex1x2n1xn+c\dfrac{{{e^x}\sqrt {1 - {x^{2n}}} }}{{1 - {x^n}}} + c
D) ex(1x2n)1xn+c\dfrac{{{e^x}(1 - {x^{2n}})}}{{1 - {x^n}}} + c

Explanation

Solution

We have the integration which has an exponential function. Firstly we take the function to expect exponential and simplify it we do some rearrangement in the numerator and split the function into two parts. We convert the numerator in the form a2b2{a^2} - {b^2} of the first part then we apply the formula of a2b2{a^2} - {b^2}. Also, we break the denominator 1xn1 - {x^n} in 1xn×1xn\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} . The factor 1xn\sqrt {1 - {x^n}} cancels each other. We get a function in the integration with exponential function with text and its derivative has resulted in integration. So we apply this result and solve it.

Complete step-by-step solution:
We have ex1+nxn1x2n(1xn)1x2ndx\int {{e^x}} \dfrac{{1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}dx
Let consider
I=ex1+nxn1x2n(1xn)(1x2n)dx\Rightarrow \,\,\,I = \int {\dfrac{{{e^x}1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}} dx-----------(1)
Here, we have 1+nxn1x2n(1xn)(1x2n)\dfrac{{1 + n{x^{n - 1}} - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}
We will simplify this first
1+nxn1x2n(1xn)(1x2n)\Rightarrow \,\,\dfrac{{1 + n{x^{n - 1}} - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}
Rearranging the numerator,we get
1x2n+nxn1(1xn)(1x2n)\Rightarrow \,\,\dfrac{{1 - {x^2}^n + n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}
Separating the factors we get
1x2n(1xn)(1x2n)+nxn1(1xn)(1x2n)\Rightarrow \,\,\dfrac{{1 - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}
Numerator of first fraction can be written as
1x2n1x2n(1xn)(1x2n)+nxn1(1xn)(1x2n)\Rightarrow \,\,\dfrac{{\sqrt {1 - {x^2}^n} \cdot \sqrt {1 - {x^2}^n} }}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}
On simplification, we get
1x2n1xn+nxn1(1xn)1x2n\Rightarrow \,\,\dfrac{{\sqrt {1 - {x^2}^n} }}{{1 - {x^n}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}
(1)2(xn)21xn+nxn1(1xn)1x2n\Rightarrow \,\,\,\dfrac{{\sqrt {{{(1)}^2} - {{({x^n})}^2}} }}{{1 - {x^n}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}
Now we have (1)2(xn)2{(1)^2} - {({x^n})^2}we can apply formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) and also 1xn1 - {x^n} can be written as 1x2×1x2\sqrt {1 - {x^2}} \times \sqrt {1 - {x^2}} , then
1+xn×1xn1xn×1xn+nxn1(1xn)1x2n\Rightarrow \,\,\,\dfrac{{\sqrt {1 + {x^n}} \times \sqrt {1 - {x^n}} }}{{\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} }} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}
Cancel 1xn\sqrt {1 - {x^n}} in both numerator and denominator from the first fraction
1+xn1xn+nxn1(1xn)1x2n\Rightarrow \,\,\dfrac{{\sqrt {1 + {x^n}} }}{{\sqrt {1 - {x^n}} }} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}
or
1+xn1xn+nxn1(1xn)1x2n\Rightarrow \,\,\,\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}
Then equation (1) becomes
I=ex(1+xn1xn+nxn1(1xn)1x2n)dx\Rightarrow \,\,\,\,I = \int {{e^x}\left( {\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}} + } \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}} \right)} dx
Now 1+xn1xn\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} is a function and nxn1(1xn)1x2n\dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }} is derivative
And we know that ex(f(x)+f1(x))dx=exf(x)+c\int {{e^x}\left( {f(x) + {f^1}(x)} \right)} \,dx = {e^x}f(x) + c
Therefore
I=ex(1+xn1xn+nxn1(1x2)1x2n)dx\Rightarrow \,\,\,I = \int {{e^x}} \left( {\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}} + } \dfrac{{n{x^{n - 1}}}}{{(1 - {x^2})\sqrt {1 - {x^2}^n} }}} \right)dx
I=ex1+xn1xn+c\Rightarrow \,\,\,I = {e^x}\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} + c
I=ex1+xn×1xn1xn×1xn+c\Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {1 + {x^n}} \times \sqrt {1 - {x^n}} }}{{\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} }} + c
I=ex(1+xn)(1xn)(1xn)2+c\Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {\left( {1 + {x^n}} \right)\left( {1 - {x^n}} \right)} }}{{{{\left( {\sqrt {1 - {x^n}} } \right)}^2}}} + c
Apply the formula (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) in numerator
I=ex12x2n1xn+c\Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {{1^2} - {x^{2n}}} }}{{1 - {x^n}}} + c

Note: Integration is a way of adding slices to find the whole integration can be used to find the area, volume, and central points. It is used to find many useful quantities.
i) Unit of a function: The unit of a function is a fundament of concepts in calculus and analysis concerning the behaviour of a function near a particular input.
ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.