Solveeit Logo

Question

Question: Evaluate \( \int {\dfrac{{{x^7}}}{{{{(x + {x^4})}^2}}}dx} \)....

Evaluate x7(x+x4)2dx\int {\dfrac{{{x^7}}}{{{{(x + {x^4})}^2}}}dx}.

Explanation

Solution

We will break the value of x7{x^7} in numerator. Thereafter will put x4=t{x^4} = t then differentiate with respect to n.n. Further, we will proceed with the integration by substitution method to arrive at the final result.

Complete step by step answer:

Let I=x7(x+x4)2dxI = \int {\dfrac{{{x^7}}}{{{{(x + {x^4})}^2}}}} dx

As we know that aman=am+n{a^m} - {a^n} = {a^{m + n}}

I=x4×x3(1+x4)2dxI = \int {\dfrac{{{x^4} \times {x^3}}}{{{{(1 + {x^4})}^2}}}} dx

Let 1+x4=t1 + {x^4} = t

x4=t1\Rightarrow {x^4} = t - 1

Differentiate with respect to xx

4x3dx=dt4{x^3}dx = dt

x3dx=dt4\Rightarrow {x^3}dx = \dfrac{{dt}}{4}

=t1(t)2dt4= \int {\dfrac{{t - 1}}{{{{(t)}^2}}} - \dfrac{{dt}}{4}}

=14(t1)t2dt = \dfrac{1}{4}\int {\dfrac{{(t - 1)}}{{{t^2}}}} dt]

I=14(tt21t2)dtI = \dfrac{1}{4}\int {\left( {\dfrac{t}{{{t^2}}} - \dfrac{1}{{{t^2}}}} \right)} dt

=14(1t1t2)dt= \dfrac{1}{4}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)dt

I=141tdt141t2dtI = \dfrac{1}{4}\int {\dfrac{1}{t}dt - \dfrac{1}{4}\int {\dfrac{1}{{{t^2}}}dt} }

141tdt14t2dt\dfrac{1}{4}\int {\dfrac{1}{t}dt - \dfrac{1}{4}\int {{t^{ - 2}}dt} }

As we know that 1xdx=logx\int {\dfrac{1}{x}dx = \log x}

Then,

I=14logt14(t2+12+1)I = \dfrac{1}{4}\log t - \dfrac{1}{4}\left( {\dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}}} \right)

I=14logt14×(t11)I = \dfrac{1}{4}\log t - \dfrac{1}{4} \times \left( {\dfrac{{{t^{ - 1}}}}{{ - 1}}} \right)

=14logt+1xt1= \dfrac{1}{4}\log t + \dfrac{1}{x}{t^{ - 1}} I

I=14logt+14×1tI = \dfrac{1}{4}\log t + \dfrac{1}{4} \times \dfrac{1}{t}

Again, we will substitute the tt in the form of xx .

I=14log(1+x4)+14×(11+x4)+CI = \dfrac{1}{4}\log (1 + {x^4}) + \dfrac{1}{4} \times \left( {\dfrac{1}{{1 + {x^4}}}} \right) + C

I=14[log(1+x4)+1(1+x4)]+CI = \dfrac{1}{4}\left[ {\log (1 + {x^4}) + \dfrac{1}{{(1 + {x^4})}}} \right] + C

Note: Integration is a way of adding slices to find the whole. Integration can be used to find areas, volumes, central points and many useful things. Students should know that 1xdx=logx\int {\dfrac{1}{x}dx = \log x} and xxdx=xn+1n+1\int {{x^x}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}and put the value of tt carefully otherwise, we will get the wrong answer.