Question
Question: Evaluate \[\int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} .\]...
Evaluate ∫x2+5x+6x+2dx.
Solution
Hint : To evaluate the given integral, first of all consider the given integral to be some variable, and then multiply and divide it with 2 and then with help of algebraic operation, separate the integrand in two terms, then integrate them separately to evaluate the given integral.
Complete step by step solution:
In order to find the integral of the given integrand, let us consider the given integrand to be I, that is
I=∫x2+5x+6x+2dx
Now multiplying and dividing the integrand that is left hand side of the equation with 2 to make the numerator such that it will be equals to the differentiation of denominator, to do this we have to do some algebraic operations too, that will be done further, after this step
⇒I=2×21×∫x2+5x+6x+2dx
We can write it as
⇒I=21×∫x2+5x+62x+4dx
Now, adding and subtracting 1 in the numerator of the integrand, we will get
I=21×∫x2+5x+62x+4+1−1dx
⇒I=21×∫x2+5x+62x+5−1dx
We can also write it as
I=21×∫x2+5x+6(2x+5)−1dx
⇒I=21×∫(x2+5x+62x+5−x2+5x+61)dx
Using distributive property of integration, we will get
I=21×(∫x2+5x+62x+5dx−∫x2+5x+61dx)
Now, let us take x2+5x+6=t⇒(2x+5)dx=dt and completing the square of the denominator of the second term integrand,
We can write x2+5x+6=x2+2×x×25+(25)2−(25)2+6=(x+25)2−425+6=4(2x+5)2−1
Using above substitutions, we will get
I=21×∫t1dt−∫4(2x+5)2−11dx
⇒I=21×−21+1t−21+1−∫2(2x+5)2−11dx
⇒I=21×2t21−∫(2x+5)2−12dx
Taking 2x+5=u⇒2dx=du
⇒I=21×2t21+a−∫u2−11du
⇒I=21×2t21+a−lnu2−1−u+b
⇒I=21×2t21−lnu2−1−u+a+b
Putting the values back, and simplifying further
I=(x2+5x+6)21−21×ln(2x+5)2−1−(2x+5)+21×(a+b)
Writing 21×(a+b)=c and simplifying further, we will get
I=(x2+5x+6)21−21×ln(2x+5)2−1−(2x+5)+c
Therefore this is the required integral of the given integrand.
So, the correct answer is “ I=(x2+5x+6)21−21×ln(2x+5)2−1−(2x+5)+c ”.
Note : We have written 21×(a+b)=c because in indefinite integration, we always get arbitrary constant which means the value will be constant but it will not be fixed, so we can take any variable to present it. Also to make the process easy you can separately integrate both the terms and then subtract them back finally to get the required integration.