Solveeit Logo

Question

Question: Evaluate \[\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \]....

Evaluate sec2x3+tan2xdx\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} .

Explanation

Solution

Here we will use the basic integration formula which states that integration of any variable xx will be equals to as below:
11+x2dx=tan1x+C\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} , where xx is any variable and C{\text{C}} is an arbitrary constant.

Complete step-by-step solution:
Step 1: In the given expression I=sec2x3+tan2xdxI = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} , let tanx=t\tan x = t. Therefore, sec2xdx=dt{\sec ^2}xdx = dt.
By substituting the value of sec2xdx=dt{\sec ^2}xdx = dt in the given expression I=sec2x3+tan2xdxI = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} , we get:
I=dt3+t2\Rightarrow I = \int {\dfrac{{dt}}{{3 + {t^2}}}}
By taking 33 out of the integral and writing 3=(3)23 = {\left( {\sqrt 3 } \right)^2} in the expression I=dt3+t2I = \int {\dfrac{{dt}}{{3 + {t^2}}}} , we get:
I=1(3)2dt1+t2(3)2\Rightarrow I = \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}}\int {\dfrac{{dt}}{{1 + \dfrac{{{t^2}}}{{{{\left( {\sqrt 3 } \right)}^2}}}}}} ………… (1)
Step 2: In the expression (1), by bringing 13\dfrac{1}{{\sqrt 3 }} inside the derivative symbol, we get:
I=13dt31+(t3)2\Rightarrow I = \dfrac{1}{{\sqrt 3 }}\int {\dfrac{{d\dfrac{t}{{\sqrt 3 }}}}{{1 + {{\left( {\dfrac{t}{{\sqrt 3 }}} \right)}^2}}}}
Now, by using the formula 11+x2dx=tan1x+C\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} in the above expression, we get:
I=13tan1t3+C\Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}} , where C{\text{C}} is an arbitrary constant.
Step 3: By substituting the value of tanx=t\tan x = t in the expression I=13tan1t3+CI = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}} , we get:
I=13tan1(tanx3)+C\Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}

The value of the integral sec2x3+tan2xdx=13tan1(tanx3)+C\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}

Note: Students needs to remember that sec2xdx=tanx+C\int {{{\sec }^2}xdx} = \tan x + {\text{C}} , the explanation is given below for better understanding:
Let I=sec2xdxI = \int {{{\sec }^2}xdx}
By multiplying and dividing the expression sec2xdx\int {{{\sec }^2}xdx} with tanx\tan x , we get:
I=sec2xtanxtanxdx\Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx}
Let, secx=t\sec x = t and by taking the derivative of it, we get secxtanxdx=dt\sec x\tan xdx = dt.
Also, we know that, tanx=sec2x1\tan x = \sqrt {{{\sec }^2}x - 1} . So, by putting these values in the expression I=sec2xtanxtanxdx\Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx} , we get:
I=tt21dt\Rightarrow I = \int {\dfrac{t}{{\sqrt {{t^2} - 1} }}dt}
Assume that t21=u{t^2} - 1 = u, so by taking the derivative of it we get:
ddx(t21)=du\Rightarrow \dfrac{d}{{dx}}\left( {{t^2} - 1} \right) = du
By simplifying the LHS side, we get:
2tdt=du\Rightarrow 2tdt = du
By doing the integration in the above expression, we get:
I=12u12du\Rightarrow I = \dfrac{1}{2}\int {{u^{ - \dfrac{1}{2}}}du}
By simplifying the terms in the RHS side, we get:
I=(12)u(12)\Rightarrow I = \left( {\dfrac{1}{2}} \right)\dfrac{{\sqrt u }}{{\left( {\dfrac{1}{2}} \right)}}
I=u\Rightarrow I = \sqrt u
By substituting the value of t21=u{t^2} - 1 = uin the above expression I=uI = \sqrt u , we get:
I=t21\Rightarrow I = \sqrt {{t^2} - 1}
Now, by substituting the value of secx=t\sec x = t in the above expression I=t21I = \sqrt {{t^2} - 1} , we get:
I=sec2x1\Rightarrow I = \sqrt {{{\sec }^2}x - 1}
But we know that sec2x1=tanx{\sec ^2}x - 1 = \tan x, so by substituting this value in the above expression we get:
I=tan2x\Rightarrow I = \sqrt {{{\tan }^2}x}
I=tanx+C\Rightarrow I = \tan x + {\text{C}} , where C{\text{C}} is an arbitrary constant.