Solveeit Logo

Question

Question: Evaluate \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \] ...

Evaluate (1cosx)dxcosx(1+cosx)\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}}
A. log(secx+tanx)2tanx2+c\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c
B. log(secx+tanx)+2tanx2+c\log \left( {\sec x + \tan x} \right) + 2\tan \dfrac{x}{2} + c
C. log(secxtanx)2tanx2+c\log \left( {\sec x - \tan x} \right) - 2\tan \dfrac{x}{2} + c
D. log(secxtanx)+2tanx2+c\log \left( {\sec x - \tan x} \right) + 2\tan \dfrac{x}{2} + c

Explanation

Solution

Here, we will use the trigonometric identity and inverse trigonometric ratio to simplify the integrand. We will substitute the variables for the simplified integrand. Then by using the concept of integration, we will integrate the function. Integration is defined as the summation of all the discrete data.

Formula Used:
We will use the following formula:
1. Trigonometric Identity: cosx=2cos2x21\cos x = 2{\cos ^2}\dfrac{x}{2} - 1 and1cosx=secx\dfrac{1}{{\cos x}} = \sec x
2. Derivative Formula: ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x,ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x and ddx(x)=1\dfrac{d}{{dx}}\left( x \right) = 1
3. Integral Formula: 1udu=ln(u)\int {\dfrac{1}{u}} du = \ln \left( u \right) andsec2vdv=tanv\int {{{\sec }^2}vdv = \tan v}

Complete Step by Step Solution:
We are given that the integral function (1cosx)dxcosx(1+cosx)\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}}
Let the given integral function be II.
I=(1cosx)dxcosx(1+cosx)I = \int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}}
Now, we will rewrite the integrand in the numerator, we get
I=(1+cosx2cosx)dxcosx(1+cosx)\Rightarrow I = \int {\dfrac{{\left( {1 + \cos x - 2\cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}}
Now, by segregating the Integrand, we get
I=1+cosxcosx(1+cosx)2cosxcosx(1+cosx)dx\Rightarrow I = \int {\dfrac{{1 + \cos x}}{{\cos x\left( {1 + \cos x} \right)}} - \dfrac{{2\cos x}}{{\cos x\left( {1 + \cos x} \right)}}dx}
Now, by cancelling the common terms in the numerator and the denominator, we get
I=1cosx2(1+cosx)dx\Rightarrow I = \int {\dfrac{1}{{\cos x}} - \dfrac{2}{{\left( {1 + \cos x} \right)}}dx}
By using the Trigonometric Identity cosx=2cos2x21\cos x = 2{\cos ^2}\dfrac{x}{2} - 1 and 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, we get
I=secx22cos2x2dx\Rightarrow I = \int {\sec x - \dfrac{2}{{2{{\cos }^2}\dfrac{x}{2}}}dx}
Now, cancelling out the common terms, we get
I=secx1cos2x2dx\Rightarrow I = \int {\sec x - \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}dx}
Using the Trigonometric Identity 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, we get
I=secxsec2x2dx\Rightarrow I = \int {\sec x - {{\sec }^2}\dfrac{x}{2}dx}
Now, by segregating the Integrand, we get
I=secxdxsec2x2dx\Rightarrow I = \int {\sec xdx - \int {{{\sec }^2}\dfrac{x}{2}dx} }
Now, by multiplying (secx+tanx)\left( {\sec x + \tan x} \right) to the numerator and the denominator of the first integral function, we get
I=secx×(secx+tanx)(secx+tanx)dxsec2x2dx\Rightarrow I = \int {\sec x \times \dfrac{{\left( {\sec x + \tan x} \right)}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} }
Now, by multiplying the terms, we get
I=sec2x+secxtanx(secx+tanx)dxsec2x2dx\Rightarrow I = \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} }……………………………….(1)\left( 1 \right)
Let us consider u=secx+tanxu = \sec x + \tan x
Now, we will differentiate the variable uu by using the derivative formula ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x and ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x. Therefore, we get
du=(secxtanx+sec2x)dx\Rightarrow du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx .
Let us consider v=x2=12xv = \dfrac{x}{2} = \dfrac{1}{2}x
Now, we will differentiate the variable vv by using the derivative formula ddx(x)=1\dfrac{d}{{dx}}\left( x \right) = 1, so we get
dv=12dx dx=2dv\begin{array}{l} \Rightarrow dv = \dfrac{1}{2}dx\\\ \Rightarrow dx = 2dv\end{array}
Substituting dx=2dvdx = 2dv and du=(secxtanx+sec2x)dxdu = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx in equation (1)\left( 1 \right), we get
I=1udu2sec2vdvI = \int {\dfrac{1}{u}du - 2\int {{{\sec }^2}vdv} }
Now, by using Integral formula 1udu=ln(u)\int {\dfrac{1}{u}} du = \ln \left( u \right) andsec2vdv=tanv\int {{{\sec }^2}vdv = \tan v} , we will integrate the function.
I=ln(u)2tanv+c\Rightarrow I = \ln \left( u \right) - 2\tan v + c
By substituting the variables uu and vv , we get
I=ln(secx+tanx)2tanx2+c\Rightarrow I = \ln \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c
I=log(secx+tanx)2tanx2+c\Rightarrow I = \log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c
Therefore, the value of (1cosx)dxcosx(1+cosx)\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} is log(secx+tanx)2tanx2+c\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c.

Thus, option(A) is the correct answer.

Note:
We know that Integration is the process of adding the small parts to find the whole parts. We need to keep in mind that whenever we are using the method of substitution in integration, the variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.