Solveeit Logo

Question

Question: Evaluate \(\int {\dfrac{{{e^x}(1 + x)}}{{{{\cos }^2}(x{e^x})}}dx = } \)...

Evaluate ex(1+x)cos2(xex)dx=\int {\dfrac{{{e^x}(1 + x)}}{{{{\cos }^2}(x{e^x})}}dx = }

Explanation

Solution

In this question first let us suppose that the xex=zx{e^x} = z, on differentiating with respect to x we get ex(x+1)dx=dz{e^x}(x + 1)dx = dz . Now put it in this equation, the integration become sec2zdz\int {{{\sec }^2}zdz} now integrate it and at last put the value of zz.

Complete step-by-step answer:
In the given question we have to find the value of ex(1+x)cos2(xex)dx\int {\dfrac{{{e^x}(1 + x)}}{{{{\cos }^2}(x{e^x})}}dx}
Hence for this let us suppose that the xex=zx{e^x} = z
Now differentiate this on both side with respect to xx
As we know that the if the function is in multiplication then differentiation of this is u.v=uv+u.vu.v = u'v + u.v'
xdexdx+exdxdx=dzdxx\dfrac{{d{e^x}}}{{dx}} + {e^x}\dfrac{{dx}}{{dx}} = \dfrac{{dz}}{{dx}}
As in this dexdx=ex\dfrac{{d{e^x}}}{{dx}} = {e^x} and dxdx=1\dfrac{{dx}}{{dx}} = 1
So the remaining x.ex+ex=dzdxx.{e^x} + {e^x} = \dfrac{{dz}}{{dx}}
or (x.ex+ex)dx=dz(x.{e^x} + {e^x})dx = dz, ex(x+1)dx=dz{e^x}(x + 1)dx = dz
put this value in the equation ex(1+x)cos2(xex)dx\int {\dfrac{{{e^x}(1 + x)}}{{{{\cos }^2}(x{e^x})}}dx} we get
dzcos2(z)\int {\dfrac{{dz}}{{{{\cos }^2}(z)}}}
sec2zdz\int {{{\sec }^2}zdz}
Hence the integration become sec2zdz\int {{{\sec }^2}zdz}
Integration of sec2z{\sec ^2}z is tanz\tan z
so sec2zdz\int {{{\sec }^2}zdz} = tanz+C\tan z + C where C is constant
Now put the value of xex=zx{e^x} = zthat is tanxex+C\tan x{e^x} + C
therefore ex(1+x)cos2(xex)dx\int {\dfrac{{{e^x}(1 + x)}}{{{{\cos }^2}(x{e^x})}}dx} = tanxex+C\tan x{e^x} + C

Note: Some of the integral that we have to remember for solving these types of questions are
 tanxdx=lnsecx+C cotxdx=lnsinx+C secxdx=lnsecx+tanx+C cosecxdx=lncosecxcotx+C secx.tanxdx=secx+C tan2xdx=tanxx+C  \ \int {\tan xdx = \ln \left| {\sec x} \right| + C} \\\ \int {\cot xdx = \ln \left| {\sin x} \right| + C} \\\ \int {\sec xdx = \ln \left| {\sec x + \tan x} \right| + C} \\\ \int {\cos ecxdx = \ln \left| {\cos ecx - \cot x} \right| + C} \\\ \int {\sec x.\tan xdx = \sec x + C} \\\ \int {{{\tan }^2}x} dx = \tan x - x + C \\\ \
Definite Integral represents the area under that curve according to that limit .