Solveeit Logo

Question

Question: Evaluate\[\int {\dfrac{{dx}}{{{x^2} - 6x + 13}}} \]....

Evaluatedxx26x+13\int {\dfrac{{dx}}{{{x^2} - 6x + 13}}} .

Explanation

Solution

For solving these types of integration questions, firstly convert the x26x+13{x^2} - 6x + 13 into complete square and then use appropriate formula, i.e., dxx2+a2=1atan1(xa)+C\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C to find out the value of integration.

Complete step-by-step answer:
dxx26x+13\int {\dfrac{{dx}}{{{x^2} - 6x + 13}}}
=dxx22×3×x+13\int {\dfrac{{dx}}{{{x^2} - 2 \times 3 \times x + 13}}}
Add and subtract (3)2{\left( 3 \right)^2} to make complete square,
=dx(x22×3×x+32)+1332\int {\dfrac{{dx}}{{\left( {{x^2} - 2 \times 3 \times x + {3^2}} \right) + 13 - {3^2}}}}
=dx(x3)2+139\int {\dfrac{{dx}}{{{{\left( {x - 3} \right)}^2} + 13 - 9}}}
=dx(x3)2+4\int {\dfrac{{dx}}{{{{\left( {x - 3} \right)}^2} + 4}}}
=dx(x3)2+22\int {\dfrac{{dx}}{{{{\left( {x - 3} \right)}^2} + {2^2}}}}
It is of the form
dxx2+a2=1atan1(xa)+C\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C , where CC is the constant of integration.
Replacing xx with (x3)\left( {x - 3} \right) and aa with 22,
dx(x3)2+22=12tan1(x32)+C\int {\dfrac{{dx}}{{{{\left( {x - 3} \right)}^2} + {2^2}}}} = \dfrac{1}{2}{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{2}} \right) + C

Note: For making the complete square of an equation ax2±bx+ca{x^2} \pm bx + c, we generally add and subtract the term (b2a)2{\left( {\dfrac{b}{{2a}}} \right)^2}. Hence for making the complete square of x26x+13{x^2} - 6x + 13, we add and subtract the term (62×1)2=(3)2=9{\left( {\dfrac{{ - 6}}{{2 \times 1}}} \right)^2} = {\left( { - 3} \right)^2} = 9.