Question
Question: Evaluate \(\int {\dfrac{{dx}}{{\sin x + \cos x}}} \) A) \(\log \tan \left( {\dfrac{\pi }{8} + \dfr...
Evaluate ∫sinx+cosxdx
A) logtan(8π+2x)+C
B) logtan(8π−2x)+C
C) 21logtan(8π+2x)+C
Solution
We will multiply and divide the whole expression with 21 and then term is as sin4π or cos4π as per our requirements and then, we will see a formula in it to combine and our integral will become really easy to be solved.
Complete step-by-step answer:
We have I=∫sinx+cosxdx
We can rewrite this as I=∫sinx(21)+cosx(21)(21)dx
We can also rewrite this as: I=(21)∫sinxcos4π+cosxsin4πdx
We also know that sin(x+y)=sinxcosy+cosxsiny.
So, we will get:- I=(21)∫sin(x+4π)dx
We know that sinx=cosecx1
I=(21)∫cosec(x+4π)dx
Now using the formula: ∫cosecx=lntan2x+C
Hence, we get: I=(21)tan(2x+8π)+C
Hence, the correct option is (C).
Note: Let us look at the alternate methods for the same question in brief:-
Method 1:
Let I=∫sinx+cosxdx
We know that we have the formulas: sin2θ=1+tan2θ2tanθ and cos2θ=1+tan2θ1−tan2θ
Now, putting in θ=2x in these formulas, we will get:-
sinx=1+tan2(2x)2tan(2x) and cosx=1+tan2(2x)1−tan2(2x).
Putting these in the given expression, we will get:-
⇒I=∫sinx+cosxdx=∫1+tan2(2x)2tan(2x)+1+tan2(2x)1−tan2(2x)dx
Simplifying the RHS, we will get the following expression:-
⇒I=∫2tan(2x)+1−tan2(2x)1+tan2(2x)dx
Now, we also know that 1+tan2θ=sec2θ. Putting this, we will get the following expression:-
⇒I=∫2tan(2x)+1−tan2(2x)sec2(2x)dx
We can write this as:-
⇒I=∫2−[1−2tan(2x)+tan2(2x)]sec2(2x)dx
We will now use the formula: (a−b)2=a2+b2−2ab. Thus, we will get:-
⇒I=∫2−(tan(2x)−1)2sec2(2x)dx ……..(X)
Now, assume that t=tan2x. So, we will have: dt=dxd(tan2x)×dxd(2x).
We know that dθd(tanθ)=sec2θ.
So, we have:- dt=21sec22x
Putting all these in (X), we will get:-
⇒I=∫2−(tan(2x)−1)2sec2(2x)dx=∫2−(t−1)22dt
We can write this as follows by using the formula: a2−b2=(a−b)(a+b).
⇒I=2∫(2+(t−1))(2−(t−1))dt
Rearranging the terms to get the following expression:-
⇒I=21∫(2+(t−1)1+2−(t−1)1)dt ………….(Y)
We also know that ∫x+adx=ln∣x+a∣+C
Hence, using this in (Y), we will get:-
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\left\\{ {\ln |\sqrt 2 + (t - 1)| - \ln |\sqrt 2 - (t - 1)|} \right\\} + C
Now, we can just modify this as per our requirements and if there are no options given, we can leave it here only.
Method 2:
We have I=∫sinx+cosxdx
We can rewrite this as I=∫sinx(21)+cosx(21)(21)dx
We can also rewrite this as: I=(21)∫sinxsin4π+cosxcos4πdx
We also know that cos(x−y)=sinxsiny+cosxcosy.
So, we will get:- I=(21)∫cos(x−4π)dx
Let u=x−4π
I=(21)∫secudu
Now using the formula: ∫secx=ln∣secx+tanx∣+C
Hence, we get: I=(21)ln∣secu+tanu∣+C
Now, just put in the value of u as we assumed and thus, we get our answer.