Solveeit Logo

Question

Question: Evaluate \(\int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}}dx\)....

Evaluate 2(1x)(1+x2)dx\int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}}dx.

Explanation

Solution

In order to solve this question, we need to separate the variables to integrate and we can do this by 2(1x)(1+x3)=A(1x)+Bx+C(1+x2)\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{3}} \right)}=\dfrac{A}{\left( 1-x \right)}+\dfrac{Bx+C}{\left( 1+{{x}^{2}} \right)} .So, our main aim is to find the value of A and B. Further in order to solve the integration w need to know the standard formulas, f(x)f(x)dx=ln(f(x))+C\int{\dfrac{f'\left( x \right)}{f\left( x \right)}}dx=\ln \left( f\left( x \right) \right)+C and 11+x2=tan1x+C\int{\dfrac{1}{1+{{x}^{2}}}={{\tan }^{-1}}x+C}.

Complete step by step answer:
We need to evaluate this integral given below,
2(1x)(1+x2)dx\int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}dx}
In order to solve this, we need to separate the denominators with an additional sign so that we can integrate separately.
We need to be in the form of A(1x)+Bx+C(1+x2)\dfrac{A}{\left( 1-x \right)}+\dfrac{Bx+C}{\left( 1+{{x}^{2}} \right)}
Therefore, we can write the expression as
2(1x)(1+x3)=A(1x)+Bx+C(1+x2)\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{3}} \right)}=\dfrac{A}{\left( 1-x \right)}+\dfrac{Bx+C}{\left( 1+{{x}^{2}} \right)}
Now, our aim is to find the values of A and B.
Let's solve the right-hand side and compare the denominators.
By solving we get,

& \dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{3}} \right)}=\dfrac{A\left( 1+{{x}^{2}} \right)+\left( Bx+C \right)\left( 1-x \right)}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)} \\\ & \dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{3}} \right)}=\dfrac{A+A{{x}^{2}}+Bx-B{{x}^{2}}+C-Cx}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)} \\\ & \dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{3}} \right)}=\dfrac{\left( A+C \right)+\left( A-B \right){{x}^{2}}+\left( B-C \right)x}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)} \\\ \end{aligned}$$ Now comparing the constant terms of 2 and rest other terms are 0. Comparing we get, $\begin{aligned} & A+C=2 \\\ & A-B=0 \\\ & B-C=0 \\\ \end{aligned}$ Solving for A, B, C we get, $A=B,B=C$ A= 1, B = 1, C = 1. Hence the integrand becomes as, $\dfrac{1}{\left( 1-x \right)}+\dfrac{x+1}{\left( 1+{{x}^{2}} \right)}$ Now we can integrate with respect to x. By integrating we get, $\begin{aligned} & \int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{1}{\left( 1-x \right)}+\dfrac{x+1}{\left( 1+{{x}^{2}} \right)}dx} \\\ & \int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{1}{\left( 1-x \right)}dx+\int{\dfrac{x+1}{\left( 1+{{x}^{2}} \right)}}dx} \\\ \end{aligned}$ We need to know the standard differentiation formula to solve this integration. The standard formulas are $\int{\dfrac{f'\left( x \right)}{f\left( x \right)}}dx=\ln \left( f\left( x \right) \right)+C$ and $\int{\dfrac{1}{1+{{x}^{2}}}={{\tan }^{-1}}x+C}$ Substituting we get, $\begin{aligned} & \int{\dfrac{1}{\left( 1-x \right)}dx+\int{\dfrac{x+1}{\left( 1+{{x}^{2}} \right)}}dx}=\int{\dfrac{1}{\left( 1-x \right)}dx+\int{\dfrac{x}{1+{{x}^{2}}}dx+\int{\dfrac{1}{1+{{x}^{2}}}dx}}} \\\ & =-\ln \left( 1-x \right)+\ln \left( 1+{{x}^{2}} \right)+{{\tan }^{-1}}x+C \end{aligned}$ Hence the integration of the equation $\int{\dfrac{2}{\left( 1-x \right)\left( 1+{{x}^{2}} \right)}}dx$ is $-\ln \left( 1-x \right)+\ln \left( 1+{{x}^{2}} \right)+{{\tan }^{-1}}x+C$ . **Note:** In this problem, we can see that while integrating we are keeping just a single constant and not all constant from every integration. This is because all the constant from all the integrations add up to a single integration. Also, in the first integration, we introduced a negative sign in the beginning because we already had one negative sign in the denominator.