Question
Question: Evaluate \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx\] A) \[\log \cos \left( {\dfrac{\pi }{4} ...
Evaluate ∫1+tanx1−tanxdx
A) logcos(4π−x)
B) logcos(4π+x)
C) logsin(4π−x)
D) logsin(4π+x)
Solution
Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.
Formula Used:
We will use the following formulas:
Trigonometric Identity: tan(A±B)=1∓tanAtanBtanA±tanB ; sec−1x=cosx
Trigonometric Value: tan4π=1
Integral Formula:∫tanxdx=−log(secx)+C
Logarithmic Formula: alogb=logba
Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using tan(A−B)=1+tanAtanBtanA−tanB formula fortan(4π−x), we have
⇒tan(4π−x)=1+tan4πtanxtan(4π)−tanx
Since tan4π=1, so we have
⇒tan(4π−x)=1+(1)tanx1−tanx
⇒tan(4π−x)=1+tanx1−tanx
⇒1+tanx1−tanx=tan(4π−x)
Substituting the value of 1+tanx1−tanx=tan(4π−x) , in , we get
⇒∫1+tanx1−tanxdx=∫tan(4π−x)dx
Using ∫tanxdx=−log(secx)+C, we have
⇒∫tan(4π−x)dx=−logsec(4π−x)+C
Using Logarithmic Formula alogb=logba, we have
⇒∫tan(4π−x)dx=logsec−1(4π−x)+C
We know that, sec−1x=cosx, so we have
⇒∫tan(4π−x)dx=logcos(4π−x)+C
Arbitrary Constant is neglected, so we have
⇒∫tan(4π−x)dx=logcos(4π−x)
⇒∫1+tanx1−tanxdx=logcos(4π−x)
Therefore, ∫1+tanx1−tanxdx=logcos(4π−x)
Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
⇒∫1+tanx1−tanxdx=∫1+cosxsinx1−cosxsinxdx
By cross-multiplication method, we have
⇒∫1+tanx1−tanxdx=∫cosxcosx+sinxcosxcosx−sinxdx
Cancelling the denominator, we have
⇒∫1+tanx1−tanxdx=∫cosx+sinxcosx−sinxdx
Substituting the denominator u=cosx+sinx and differentiating the denominator, we have dxdu=cosx−sinx , we get
⇒∫1+tanx1−tanxdx=∫u1du
⇒∫1+tanx1−tanxdx=logu+C
Rewriting the term, we have
⇒∫1+tanx1−tanxdx=log(cosx+sinx)+C