Solveeit Logo

Question

Question: Evaluate \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx\] A) \[\log \cos \left( {\dfrac{\pi }{4} ...

Evaluate 1tanx1+tanxdx\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx
A) logcos(π4x)\log \cos \left( {\dfrac{\pi }{4} - x} \right)
B) logcos(π4+x)\log \cos \left( {\dfrac{\pi }{4} + x} \right)
C) logsin(π4x)\log \sin \left( {\dfrac{\pi }{4} - x} \right)
D) logsin(π4+x)\log \sin \left( {\dfrac{\pi }{4} + x} \right)

Explanation

Solution

Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.

Formula Used:
We will use the following formulas:
Trigonometric Identity: tan(A±B)=tanA±tanB1tanAtanB\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}} ; sec1x=cosx{\sec ^{ - 1}}x = \cos x
Trigonometric Value: tanπ4=1\tan \dfrac{\pi }{4} = 1
Integral Formula:tanxdx=log(secx)+C\int {\tan x} dx = - \log \left( {\sec x} \right) + C
Logarithmic Formula: alogb=logbaa\log b = \log {b^a}

Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} formula fortan(π4x)\tan \left( {\dfrac{\pi }{4} - x} \right), we have
tan(π4x)=tan(π4)tanx1+tanπ4tanx\Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}
Since tanπ4=1\tan \dfrac{\pi }{4} = 1, so we have
tan(π4x)=1tanx1+(1)tanx\Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + (1)\tan x}}
tan(π4x)=1tanx1+tanx\Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}

1tanx1+tanx=tan(π4x) \Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)
Substituting the value of 1tanx1+tanx=tan(π4x)\dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right) , in , we get
1tanx1+tanxdx=tan(π4x)dx\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx

Using tanxdx=log(secx)+C\int {\tan x} dx = - \log \left( {\sec x} \right) + C, we have
tan(π4x)dx=logsec(π4x)+C\Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = - \log \sec \left( {\dfrac{\pi }{4} - x} \right) + C
Using Logarithmic Formula alogb=logbaa\log b = \log {b^a}, we have
tan(π4x)dx=logsec1(π4x)+C\Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log {\sec ^{ - 1}}\left( {\dfrac{\pi }{4} - x} \right) + C
We know that, sec1x=cosx{\sec ^{ - 1}}x = \cos x, so we have
tan(π4x)dx=logcos(π4x)+C\Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right) + C
Arbitrary Constant is neglected, so we have
tan(π4x)dx=logcos(π4x)\Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)
1tanx1+tanxdx=logcos(π4x)\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)

Therefore, 1tanx1+tanxdx=logcos(π4x)\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)

Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
1tanx1+tanxdx=1sinxcosx1+sinxcosxdx\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dx
By cross-multiplication method, we have
1tanx1+tanxdx=cosxsinxcosxcosx+sinxcosxdx\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}} dx
Cancelling the denominator, we have
1tanx1+tanxdx=cosxsinxcosx+sinxdx\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} dx

Substituting the denominator u=cosx+sinxu = \cos x + \sin x and differentiating the denominator, we have dudx=cosxsinx\dfrac{{du}}{{dx}} = \cos x - \sin x , we get
1tanx1+tanxdx=1udu\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{1}{u}} du
1tanx1+tanxdx=logu+C\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log u + C
Rewriting the term, we have
1tanx1+tanxdx=log(cosx+sinx)+C\Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log (\cos x + \sin x) + C