Solveeit Logo

Question

Question: Evaluate: \(\int \dfrac{1}{\sin^{4} x+\sin^{2} x\cos^{2} x+\cos^{4} x} dx.\)...

Evaluate: 1sin4x+sin2xcos2x+cos4xdx.\int \dfrac{1}{\sin^{4} x+\sin^{2} x\cos^{2} x+\cos^{4} x} dx.

Explanation

Solution

In this question it is given that that we have to evaluate

1sin4x+sin2xcos2x+cos4xdx.\int \dfrac{1}{\sin^{4} x+\sin^{2} x\cos^{2} x+\cos^{4} x} dx.

So to find the solution we need to use some formulas, which are

(a+b)2=a2+2ab+b2\left( a+b\right)^{2} =a^{2}+2ab+b^{2}.......(1)

sin2θ+cos2θ=1\sin^{2} \theta +\cos^{2} \theta =1............(2)

After that we have to use the substitution method in order to get the solution.

Complete step-by-step answer:

Let,

I=1sin4x+sin2xcos2x+cos4xdxI=\int \dfrac{1}{\sin^{4} x+\sin^{2} x\cos^{2} x+\cos^{4} x} dx

Adding and Subtracting sin2xcos2x\sin^{2} x\cos^{2} x in Denominator, we get

=1sin4x+2sin2xcos2x+cos4xsin2xcos2xdx=\int \dfrac{1}{\sin^{4} x+2\sin^{2} x\cos^{2} x+\cos^{4} x-\sin^{2} x\cos^{2} x} dx

=1(sin2x)2+2sin2xcos2x+(cos2x)2sin2xcos2xdx=\int \dfrac{1}{\left( \sin^{2} x\right)^{2} +2\sin^{2} x\cos^{2} x+\left( \cos^{2} x\right)^{2} -\sin^{2} x\cos^{2} x} dx

since, Now by using formula (1) where a=sin2xa=\sin^{2} x and b=cos2xb=\cos^{2} x, Now this is (a+b)2\left( a+b\right)^{2} formula, we get,

I=1(sin2x+cos2x)2sin2xcos2xdxI=\int \dfrac{1}{\left( \sin^{2} x+\cos^{2} x\right)^{2} -\sin^{2} x\cos^{2} x} dx

=112sin2xcos2xdx=\int \dfrac{1}{1^{2}-\sin^{2} x\cos^{2} x} dx using formula (2)

=11sin2xcos2xdx=\int \dfrac{1}{1-\sin^{2} x\cos^{2} x} dx

=444sin2xcos2xdx=\int \dfrac{4}{4-4\sin^{2} x\cos^{2} x} dx multiplying numerator and denominator by 4

=4422sin2xcos2xdx=\int \dfrac{4}{4-2^{2}\sin^{2} x\cos^{2} x} dx

=44(2sinxcosx)2dx=\int \dfrac{4}{4-\left( 2\sin x\cos x\right)^{2} } dx

we know that, 2sinxcosx =sin2x 2\sin x\cos x\ = \sin 2x, By substituting this, we get

=44(sin2x)2dx=\int \dfrac{4}{4-\left( \sin 2x\right)^{2} } dx

=44sin22xdx=\int \dfrac{4}{4-\sin^{2} 2x} dx

=43+1sin22xdx=\int \dfrac{4}{3+1-\sin^{2} 2x} dx

=43+cos22xdx=\int \dfrac{4}{3+\cos^{2} 2x} dx since, 1sin2θ=cos2θ1-\sin^{2} \theta =\cos^{2} \theta

Now multiplying numerator and denominator by sec22x\sec^{2} 2x, we get,

I=4sec22x3sec22x+sec22xcos22xdxI=\int \dfrac{4\sec^{2} 2x}{3\sec^{2} 2x+\sec^{2} 2x\cos^{2} 2x} dx

=4sec22x3sec22x+1dx=\int \dfrac{4\sec^{2} 2x}{3\sec^{2} 2x+1} dx since, sec2x×cos2x=1\sec 2x\times\cos 2x =1

=4sec22x3(1+tan22x)+1dx=\int \dfrac{4\sec^{2} 2x}{3\left( 1+\tan^{2} 2x\right) +1} dx sec2θ=1+tan2θ\because \sec^{2} \theta =1+\tan^{2} \theta

=4sec22x3+3tan22x+1dx=\int \dfrac{4\sec^{2} 2x}{3+3\tan^{2} 2x+1} dx

=4sec22x4+3tan22xdx=\int \dfrac{4\sec^{2} 2x}{4+3\tan^{2} 2x} dx

Now we are going to use the substitution method,

Let, tan2x=z\tan 2x=z

Now differentiating both side w.r.t ‘x’ we get,

2sec22xdx=dz2\sec^{2} 2xdx=dz

sec22xdx=12dz\sec^{2} 2xdx=\dfrac{1}{2} dz

Now substituting the value of tan2x\tan 2x we get,

I=4(12)dz4+3z2I=\int \dfrac{4\left( \dfrac{1}{2} \right) dz}{4+3z^{2}}

=2dz3z2+4=\int \dfrac{2dz}{3z^{2}+4}

taking 3 common from denominator, we get,

=23dzz2+43=\dfrac{2}{3} \int \dfrac{dz}{z^{2}+\dfrac{4}{3} }

=23dzz2+(23)2=\dfrac{2}{3} \int \dfrac{dz}{z^{2}+\left( \dfrac{2}{\sqrt{3} } \right)^{2} }

The above integration is in the form of dxx2+a2\int \dfrac{dx}{x^{2}+a^{2}},

And as we know that dxx2+a2=1atan1(xa)+c\int \dfrac{dx}{x^{2}+a^{2}} =\dfrac{1}{a} \tan^{-1} \left( \dfrac{x}{a} \right) +c

So by using the above formula we can write,

I=23×1(23)tan1(z(23))+cI=\dfrac{2}{3} \times \dfrac{1}{\left( \dfrac{2}{\sqrt{3} } \right) } \tan^{-1} \left( \dfrac{z}{\left( \dfrac{2}{\sqrt{3} } \right) } \right) +c

=23×32tan1(3z2)+c=\dfrac{2}{3} \times \dfrac{\sqrt{3} }{2} \tan^{-1} \left( \dfrac{\sqrt{3} z}{2} \right) +c

=13tan1(3tan2x2)+c(since,z=tan2x)=\dfrac{1}{\sqrt{3} } \tan^{-1} \left( \dfrac{\sqrt{3} \tan 2x}{2} \right) +c (since, z=\tan 2x)

Which is our required solution.

Note: To solve this type of question you need to know that if the derivative of any term of denominator is present in the numerator then only you can apply the substitution method, here in order to get that derivative in numerator we have multiplied sec22x\sec^{2} 2x in the numerator and denominator.