Solveeit Logo

Question

Question: Evaluate\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx\], where \[a > x\]...

Evaluate1(a2x2)dx\int {\dfrac{1}{{({a^2} - {x^2})}}} dx, where a>xa > x

Explanation

Solution

We are given here to integrate the function 1(a2x2)\dfrac{1}{{({a^2} - {x^2})}}, where a>xa > x. To do this, first of all we will expand the denominator using the formula of (a2b2)({a^2} - {b^2}). Then we will multiply and divide the numerator and denominator by 2a2a. Now we will write the numerator as a+x+axa + x + a - x. Now we will solve further and get the value of this integration.
Formula used: We use the following formulas here,
lnalnb=lnab\ln a - \ln b = \ln \dfrac{a}{b}
1xdx=lnx+c\int {\dfrac{1}{x}dx = \ln x + c}
(a2b2)=(a+b)(ab)({a^2} - {b^2}) = (a + b)(a - b)

Complete step-by-step solution:
We are given to integrate1(a2x2)dx\int {\dfrac{1}{{({a^2} - {x^2})}}} dx.
We know that (a2b2)=(a+b)(ab)({a^2} - {b^2}) = (a + b)(a - b). Using this formula, we write the function 1(a2x2)\dfrac{1}{{({a^2} - {x^2})}} as,
1(a2x2)=1(a+x)(ax)\dfrac{1}{{({a^2} - {x^2})}} = \dfrac{1}{{(a + x)(a - x)}}
We multiply and divide the numerator and denominator by 2a2a.
1(a2x2)=2a2a1(a+x)(ax)\Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{1}{{(a + x)(a - x)}}
We now add and subtract xx on the numerator as,
1(a2x2)=2a2axx(a+x)(ax)\Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{{x - x}}{{(a + x)(a - x)}}
We will now rearrange this function,
1(a2x2)=(a+x)+(ax)2a(a+x)(ax)\Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{(a + x) + (a - x)}}{{2a(a + x)(a - x)}}
We will use this step in the integration. We replace 1(a2x2)\dfrac{1}{{({a^2} - {x^2})}} with RHS of above step as,
1(a2x2)dx=12a(a+x)+(ax)(a+x)(ax)dx\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\dfrac{{(a + x) + (a - x)}}{{(a + x)(a - x)}}dx}
On simplifying further,

1(a2x2)dx=12a(a+x(a+x)(ax))dx+12a(ax(a+x)(ax))dx 1(a2x2)dx=12a(1(ax))dx+12a(1(a+x))dx  \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{{a + x}}{{(a + x)(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{{a - x}}{{(a + x)(a - x)}}} \right)dx} } \\\ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a + x)}}} \right)dx} } \\\

We know that 1xdx=lnx+c\int {\dfrac{1}{x}dx = \ln x + c} , using this above we get,
1(a2x2)dx=12a(ln(ax))+12a(ln(a+x))\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left( { - \ln (a - x)} \right) + \dfrac{1}{{2a}}\left( {\ln \left( {a + x} \right)} \right)
Since, a>xa > x we can safely put the value axa - x in log function as ax>0a - x > 0.
1(a2x2)dx=12a[ln(a+x)ln(ax)]\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {a + x} \right) - \ln (a - x)} \right]
As we know that lnalnb=lnab\ln a - \ln b = \ln \dfrac{a}{b}, we move ahead as,
1(a2x2)dx=12a[ln(a+xax)]\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right]
Hence we have got the value of the given integration as 12a[ln(a+xax)]\dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right].

Note: This is to note that we could have also done this integration by the method of partial fraction. But that method is a bit longer. Moreover, if you are not able to find the suitable modifications on the function you can always use a partial fraction method in such types of questions. In partial fraction, we will write the integration as,
1(a2x2)dx=[Aa+x+Bax]dx\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \int {\left[ {\dfrac{A}{{a + x}} + \dfrac{B}{{a - x}}} \right]dx}
We then find the value of AA and BB and then solve ahead.