Solveeit Logo

Question

Question: Evaluate \[\int {\cos \sqrt x dx} \] A. \[\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\]...

Evaluate cosxdx\int {\cos \sqrt x dx}
A. [xsinx+cosx]\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]
B. 2[sinxcosx]2\left[ {\sin \sqrt x - \cos \sqrt x } \right]
C. 2[xsinx+xcosx]2\left[ {\sqrt x \sin \sqrt x + \sqrt x \cos \sqrt x } \right]
D. 2[xsinx+cosx]2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]

Explanation

Solution

Here, we will use the Integration by Parts formula to simplify the integrand. Then by using the suitable Integral formula, we will find the integral of the given function. Integration is defined as the summation of all the discrete data.

Formula Used:
We will use the following formula:
1. Derivative formula: ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, ddx(C)=1\dfrac{d}{{dx}}\left( C \right) = 1
2. Integration by Parts: uvdx=uvvdu\int {uvdx = uv - \int {vdu} }
3. Integral Formula: costdt=sint\int {\cos tdt = \sin t} , sintdt=cost\int {\sin tdt = - \cos t}

Complete Step by Step Solution:
We are given an integral function cosxdx\int {\cos \sqrt x dx} .
Let the given integral function be II
I=cosxdxI = \int {\cos \sqrt x dx} …………………………………………….(1)\left( 1 \right)
Now, we will substitute a variable for the radical expression in the integrand, we get
t=x=(x)12t = \sqrt x = {\left( x \right)^{\dfrac{1}{2}}} ……………………………………...(2)\left( 2 \right)
Now, we will differentiate the variable with respect to xx using the derivative formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, we get
dtdx=12x121\Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}}
dt=12xdx\Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx
Now, by rewriting the equation, we get
dx=2xdt\Rightarrow dx = 2\sqrt x dt
dx=2tdt\Rightarrow dx = 2tdt ……………………………………………(3)\left( 3 \right)
Substituting the equation (2)\left( 2 \right) and (3)\left( 3 \right) in equation (1)\left( 1 \right) , we get
I=cost2tdtI = \int {\cos t \cdot 2tdt}
I=2tcostdt\Rightarrow I = 2\int {t\cos tdt}
Now, by using Integration by Parts formula uvdx=uvvdu\int {uvdx = uv - \int {vdu} } for the Integral function, we get u=tu = t according to ILATE rule and v=costv = \cos t .
Now, we will differentiate the variable uu, so we get
du=dtdu = dt
Now, we will integrate the variable vv using the formula costdt=sint\int {\cos tdt = \sin t} , so we get
costdt=sint\int {\cos tdt = \sin t}
Substituting differentiated variable and integrated variable in the integration by parts formula, we get
tcostdt=tsintsintdt\Rightarrow \int {t\cos tdt = t\sin t - \int {\sin tdt} }
Now, by using the integral formula sintdt=cost\int {\sin tdt = - \cos t} , we get
tcostdt=tsint(cost)\Rightarrow \int {t\cos tdt = t\sin t - \left( { - \cos t} \right)}
tcostdt=tsint+cost\Rightarrow \int {t\cos tdt = t\sin t + \cos t} …………………………………………(4)\left( 4 \right)
Now, by substituting I=2tcostdtI = 2\int {t\cos tdt} in the equation (4)\left( 4 \right), we get
I=2[tsint+cost]+c\Rightarrow I = 2\left[ {t\sin t + \cos t} \right] + c
Now, by substituting the equation (2)\left( 2 \right), we get
I=2[xsinx+cosx]\Rightarrow I = 2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]
Therefore, the value of cosxdx\int {\cos \sqrt x dx} is 2[xsinx+cosx]2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right].

Thus, option (D) is the correct answer.

Note:
We know that Integration is the process of adding small parts to find the whole parts. While performing the Integration by Parts, the first function is selected according to ILATE rule where Inverse Trigonometric function, followed by Logarithmic function, Arithmetic Function, Trigonometric Function and at last Exponential Function. Integration by Parts is applicable only when the integrand is a product of two Functions.