Solveeit Logo

Question

Question: Evaluate \(\int {{{\cos }^3}xdx} \)...

Evaluate cos3xdx\int {{{\cos }^3}xdx}

Explanation

Solution

Our integrand is cos3x{\cos ^3}x and it can be written as the product of cos2x{\cos ^2}x and cos x and using the identity cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1we can split the integral in the form of I=I1+I2I = {I_1} + {I_2}and using the basic integration values we get the required solution .

Complete step-by-step answer:
Here our integrand is a trigonometric function
cos3x{\cos ^3}x can be written as the product of cos2x{\cos ^2}x and cos x
cos3xdx=(cos2xcosx)dx\Rightarrow \int {{{\cos }^3}xdx = \int {\left( {{{\cos }^2}x*\cos x} \right)} dx}
Now we can use the identity cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 to replace cos2x{\cos ^2}x
cos3xdx=(1sin2x)cosxdx cos3xdx=(cosxcosxsin2x)dx cos3xdx=cosxdxcosxsin2xdx \begin{gathered} \Rightarrow \int {{{\cos }^3}xdx = \int {\left( {1 - {{\sin }^2}x} \right)} \cos xdx} \\\ \Rightarrow \int {{{\cos }^3}xdx = \int {\left( {\cos x - \cos x{{\sin }^2}x} \right)} dx} \\\ \Rightarrow \int {{{\cos }^3}xdx = \int {\cos xdx} } - \int {\cos x{{\sin }^2}xdx} \\\ \end{gathered}
So now our integral is of the form I=I1+I2I = {I_1} + {I_2}
Where I1=cosxdx , I2=cosxsin2xdx{I_1} = \int {\cos xdx{\text{ , }}{I_2} = \int {\cos x{{\sin }^2}xdx} }
We know that the integration of cos x is sin x
I1=sinx+c\Rightarrow {I_1} = \sin x + c
We need to find the value of I2{I_2} by substitution method
Let sin x = t
Then cos x dx = dt
I2=t2dt\Rightarrow {I_2} = \int {{t^2}dt}
We know that xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
Using this
I2=t2+12+1+c=t33+c\Rightarrow {I_2} = \dfrac{{{t^{2 + 1}}}}{{2 + 1}} + c = \dfrac{{{t^3}}}{3} + c
And substituting sin x = t
I2=sin3x3+c\Rightarrow {I_2} = \dfrac{{{{\sin }^3}x}}{3} + c
Hence
I=I1+I2 cos3xdx=sinx+sin3x3+C  \Rightarrow I = {I_1} + {I_2} \\\ \Rightarrow \int {{{\cos }^3}xdx = \sin x + \dfrac{{{{\sin }^3}x}}{3} + C} \\\
Hence the required value is obtained .

Note: Many students make a mistake by applying the formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} with cos x as x .But it is wrong
And to split cos2x{\cos ^2}x students use other identities but it makes the process much tedious.