Solveeit Logo

Question

Mathematics Question on Definite Integral

Evaluate0π/21cotxcscx+cosxdx:Evaluate \int_0^{\pi/2} \frac{1 - \cot x}{\csc x + \cos x} \, dx:

A

0

B

π4\frac{\pi}{4}

C

\infty

D

π12\frac{\pi}{12}

Answer

0

Explanation

Solution

The given integral is:

I=0π21cotxcscx+cosxdx.I = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cot x}{\csc x + \cos x} dx.

Analyze the symmetry of the integral. The limits of the integral are symmetric about π4\frac{\pi}{4}, and the integrand contains terms that involve trigonometric functions sinx\sin x, cosx\cos x, cotx\cot x, and cscx\csc x. Specifically, consider the property:

f(x)=f(π2x).f(x) = -f\left(\frac{\pi}{2} - x\right).

For the integrand:

f(x)=1cotxcscx+cosx.f(x) = \frac{1 - \cot x}{\csc x + \cos x}.

Using the trigonometric substitutions:

cot(π2x)=tanx,csc(π2x)=secx,cos(π2x)=sinx,\cot\left(\frac{\pi}{2} - x\right) = \tan x, \quad \csc\left(\frac{\pi}{2} - x\right) = \sec x, \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x,

we find that the integrand satisfies the property:

f(x)+f(π2x)=0.f(x) + f\left(\frac{\pi}{2} - x\right) = 0.

Since f(x)f(x) is odd with respect to x=π4x = \frac{\pi}{4}, the integral over the symmetric interval [0,π2][0, \frac{\pi}{2}] evaluates to 0.

Thus:

I=0.I = 0.