Question
Mathematics Question on Definite Integral
Evaluate∫0π/2cscx+cosx1−cotxdx:
A
0
B
4π
C
∞
D
12π
Answer
0
Explanation
Solution
The given integral is:
I=∫02πcscx+cosx1−cotxdx.
Analyze the symmetry of the integral. The limits of the integral are symmetric about 4π, and the integrand contains terms that involve trigonometric functions sinx, cosx, cotx, and cscx. Specifically, consider the property:
f(x)=−f(2π−x).
For the integrand:
f(x)=cscx+cosx1−cotx.
Using the trigonometric substitutions:
cot(2π−x)=tanx,csc(2π−x)=secx,cos(2π−x)=sinx,
we find that the integrand satisfies the property:
f(x)+f(2π−x)=0.
Since f(x) is odd with respect to x=4π, the integral over the symmetric interval [0,2π] evaluates to 0.
Thus:
I=0.