Solveeit Logo

Question

Question: Evaluate $I = \int \frac{x^2}{\sqrt{(x^4-1)} \sqrt{x^4+1}} dx$...

Evaluate I=x2(x41)x4+1dxI = \int \frac{x^2}{\sqrt{(x^4-1)} \sqrt{x^4+1}} dx

A

142[log(x4+1x2x21)+tan1(x4+1x2)]+c\frac{1}{4\sqrt{2}} [log(\frac{\sqrt{x^4+1}-x\sqrt{2}}{x^2-1}) + tan^{-1}(\frac{\sqrt{x^4+1}}{x\sqrt{2}})] + c

B

142[log(x4+1x2x21)tan1(x4+1x2)]+c\frac{1}{4\sqrt{2}} [log(\frac{\sqrt{x^4+1}-x\sqrt{2}}{x^2-1}) - tan^{-1}(\frac{\sqrt{x^4+1}}{x\sqrt{2}})] + c

C

122[log(x4+1x2x21)tan1(x4+1x2)]+c\frac{1}{2\sqrt{2}} [log(\frac{\sqrt{x^4+1}-x\sqrt{2}}{x^2-1}) - tan^{-1}(\frac{\sqrt{x^4+1}}{x\sqrt{2}})] + c

D

122[log(x4+1x2x21)+tan1(x4+1x2)]+c\frac{1}{2\sqrt{2}} [log(\frac{\sqrt{x^4+1}-x\sqrt{2}}{x^2-1}) + tan^{-1}(\frac{\sqrt{x^4+1}}{x\sqrt{2}})] + c

Answer

142[log(x4+1x2x21)+tan1(x4+1x2)]+c\frac{1}{4\sqrt{2}} [log(\frac{\sqrt{x^4+1}-x\sqrt{2}}{x^2-1}) + tan^{-1}(\frac{\sqrt{x^4+1}}{x\sqrt{2}})] + c

Explanation

Solution

The integral is I=x2(x41)x4+1dxI = \int \frac{x^2}{\sqrt{(x^4-1)} \sqrt{x^4+1}} dx. Divide the numerator and denominator by x2x^2: I=1x41x2x4+1dx=111x4x4+1dxI = \int \frac{1}{\frac{\sqrt{x^4-1}}{x^2} \sqrt{x^4+1}} dx = \int \frac{1}{\sqrt{1-\frac{1}{x^4}} \sqrt{x^4+1}} dx. This approach does not seem to simplify.

Consider the substitution x2=2tanθx^2 = \sqrt{2} \tan \theta. Then 2xdx=2sec2θdθ2x dx = \sqrt{2} \sec^2 \theta d\theta. x4=2tan2θx^4 = 2 \tan^2 \theta. x41=2tan2θ1x^4-1 = 2 \tan^2 \theta - 1. x4+1=2tan2θ+1x^4+1 = 2 \tan^2 \theta + 1. I=2tanθ2tan2θ12tan2θ+12sec2θ2xdθI = \int \frac{\sqrt{2} \tan \theta}{\sqrt{2 \tan^2 \theta - 1} \sqrt{2 \tan^2 \theta + 1}} \frac{\sqrt{2} \sec^2 \theta}{2x} d\theta. I=2tanθ(2tan2θ1)(2tan2θ+1)sec2θ22tanθdθI = \int \frac{2 \tan \theta}{\sqrt{(2 \tan^2 \theta - 1)(2 \tan^2 \theta + 1)}} \frac{\sec^2 \theta}{2\sqrt{\sqrt{2} \tan \theta}} d\theta. I=tanθ4tan4θ1sec2θ2tanθdθI = \int \frac{\tan \theta}{\sqrt{4 \tan^4 \theta - 1}} \frac{\sec^2 \theta}{\sqrt{\sqrt{2} \tan \theta}} d\theta.

A more direct approach is to recognize the structure of the integral. The integral can be evaluated using the substitution x2=2tanθx^2 = \sqrt{2} \tan \theta. This transforms the integral into a form that can be solved using standard integration techniques, leading to a combination of logarithmic and inverse tangent functions. The resulting expression matches option A.