Solveeit Logo

Question

Question: Evaluate \( I = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ }}\left( {x \geqslant 0} \right) \) A. \( 4...

Evaluate I=dx4x+5 (x0)I = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ }}\left( {x \geqslant 0} \right)
A. 4ln(4x+5)4\ln \left( {4x + 5} \right)
B. 4ln(4x+5)+C4\ln \left( {4x + 5} \right) + C
C. ln(4x+5)4\dfrac{{\ln \left( {4x + 5} \right)}}{4}
D. 14ln(4x+5)+C\dfrac{1}{4}\ln \left( {4x + 5} \right) + C

Explanation

Solution

In order to find the Integral of the function, first simplify the term by taking the denominator as a variable. Differentiate the obtained equation of the denominator with respect to xx , substitute the values in the main integral function. Solve the obtained equation using the formulas of integration known to us.
Formula used:
dxdx=1\dfrac{{dx}}{{dx}} = 1
d(constant)dx=0\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0
1ydy=lny+C\int {\dfrac{1}{y}dy} = \ln y + C'

Complete step-by-step answer :
We are given with an integral function I=dx4x+5I = \int {\dfrac{{dx}}{{4x + 5}}} . ………(1)
Let us consider 4x+54x + 5 to be yy that is written as:
y=4x+5y = 4x + 5 ………(2)
Differentiating both the sides of equation (2), with respect to xx :
dydx=d(4x+5)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x + 5} \right)}}{{dx}}
Splitting the right side:
dydx=d(4x)dx+d(5)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x} \right)}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}}
dydx=4dxdx+d(5)dx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4dx}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}}
Since, we know that dxdx=1\dfrac{{dx}}{{dx}} = 1 and d5dx=0\dfrac{{d5}}{{dx}} = 0 , so substituting these values in above equation, we get:
dydx=4×1+0\Rightarrow \dfrac{{dy}}{{dx}} = 4 \times 1 + 0
dydx=4\Rightarrow \dfrac{{dy}}{{dx}} = 4
Multiplying both the sides by dxdx , we get:
dydx×dx=4dx dy=4dx   \Rightarrow \dfrac{{dy}}{{dx}} \times dx = 4dx \\\ \Rightarrow dy = 4dx \;
Dividing both the sides by 44 , we get:
dy4=4dx4 dy4=dx dx=dy4   \Rightarrow \dfrac{{dy}}{4} = \dfrac{{4dx}}{4} \\\ \Rightarrow \dfrac{{dy}}{4} = dx \\\ \Rightarrow dx = \dfrac{{dy}}{4} \;
Substituting the value of dx=dy4dx = \dfrac{{dy}}{4} and y=4x+5y = 4x + 5 in the equation (1):
I=dx4x+5=1ydy4I = \int {\dfrac{{dx}}{{4x + 5}}} = \int {\dfrac{1}{y}\dfrac{{dy}}{4}}
Taking the constant out of the integration, we get:
I=141ydyI = \dfrac{1}{4}\int {\dfrac{1}{y}dy}
From the formulas of integration, we know 1ydy=lny+C\int {\dfrac{1}{y}dy} = \ln y + C' .
So, substituting this value in the above equation, we get:
I=141ydyI = \dfrac{1}{4}\int {\dfrac{1}{y}dy}
I=14(lny+C)\Rightarrow I = \dfrac{1}{4}\left( {\ln y + C'} \right)
Opening the parenthesis:
I=14lny+14C\Rightarrow I = \dfrac{1}{4}\ln y + \dfrac{1}{4}C'
I=14lny+C\Rightarrow I = \dfrac{1}{4}\ln y + C where C,CC,C' are constants.
Substituting the value of yy from equation (2) in the above equation, and we get:
I=14ln(4x+5)+C\Rightarrow I = \dfrac{1}{4}\ln \left( {4x + 5} \right) + C
Which matches with the Option D.
Therefore, I=dx4x+5 = 14ln(4x+5)+CI = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ = }}\dfrac{1}{4}\ln \left( {4x + 5} \right) + C
Hence, Option D is correct.
So, the correct answer is “Option D”.

Note: Integration is nothing but the opposite of differentiation.
During differentiation, we know that the differentiation of a constant becomes zero, so the constant is removed, that’s why during integration a constant term is added to fulfil the requirement of that constant if removed.