Solveeit Logo

Question

Question: Evaluate: (i) \(\dfrac{{{{\sin }^2}{{63}^ \circ } + {{\sin }^2}{{27}^ \circ }}}{{{{\cos }^2}{{17}^...

Evaluate:
(i) sin263+sin227cos217+cos273\dfrac{{{{\sin }^2}{{63}^ \circ } + {{\sin }^2}{{27}^ \circ }}}{{{{\cos }^2}{{17}^ \circ } + {{\cos }^2}{{73}^ \circ }}}
(ii) sin25cos65+cos25sin65\sin {25^ \circ }\cos {65^ \circ } + \cos {25^ \circ }\sin {65^ \circ }

Explanation

Solution

Hint: The expression containing trigonometric functions can be evaluated from the relation of trigonometric identities. This expression is related to trigonometric ratios of complementary angles, two angles are said to be complementary if their sums equals 9090 degrees. Then we apply the trigonometric identitiy to get the required answer.

Complete step-by-step answer:
Let,
x=sin263+sin227cos217+cos273x = \dfrac{{{{\sin }^2}{{63}^ \circ } + {{\sin }^2}{{27}^ \circ }}}{{{{\cos }^2}{{17}^ \circ } + {{\cos }^2}{{73}^ \circ }}}
We can perform the numerator first,
we know that, 63+27=9063 + 27 = 90
Since, 63=902763 = 90 - 27, we can substitute 6363 with 902790 - 27 .
So, numerator becomes,
sin2(9027)+sin227{\sin ^2}(90 - 27) + {\sin ^2}{27^ \circ }.
Similarly, we can perform the denominator,
we know 73+17=9073 + 17 = 90 .
Hence 17=907317 = 90 - 73 so we can substitute 1717 with 907390 - 73 .
So, the denominator becomes cos2(9073)+cos273{\cos ^2}(90 - 73) + {\cos ^2}{73^ \circ } .
Substitute the values in the above expression,
x=sin2(9027)+sin227cos2(9073)+cos273x = \dfrac{{{{\sin }^2}(90 - 27) + {{\sin }^2}{{27}^ \circ }}}{{{{\cos }^2}(90 - 73) + {{\cos }^2}{{73}^ \circ }}}
We know that,
cos(90θ)=sinθ\cos (90 - \theta ) = \sin \theta
sin(90θ)=cosθ\sin (90 - \theta ) = \cos \theta ,
Using the above relation, the expression becomes,
x=cos227+sin227sin273+cos273x = \dfrac{{{{\cos }^2}{{27}^ \circ } + {{\sin }^2}{{27}^ \circ }}}{{{{\sin }^2}{{73}^ \circ } + {{\cos }^2}{{73}^ \circ }}}
By using the trigonometric identity, we know that,
sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
Thus, by using the trigonometric identities the expression becomes,

Hence the value of the expression is,

 cos227+sin227sin273+cos273=1   \\\ \dfrac{{{{\cos }^2}{{27}^ \circ } + {{\sin }^2}{{27}^ \circ }}}{{{{\sin }^2}{{73}^ \circ } + {{\cos }^2}{{73}^ \circ }}} = 1 \\\ \\\

Note: If an expression contains a trigonometric function firstly convert the trigonometric function into trigonometric identities. The relation of trigonometric identities in the expression is used to evaluate the value of the given expression.Students should remember the trigonometric identities and standard angles for solving these types of questions.

ii)
Hint: The expression containing trigonometric functions can be evaluated from the relation of trigonometric identities. This expression is related to trigonometric ratios of complementary angles, two angles are said to be complementary if their sums equals 9090 degrees.Applying the trigonometric identity we get the required answer.

Complete step-by-step answer:
Let,
x=sin25cos65+cos25sin65x = \sin {25^ \circ }\cos {65^ \circ } + \cos {25^ \circ }\sin {65^ \circ }
Complete step-by-step solution:
x=sin25cos65+cos25sin65x = \sin {25^ \circ }\cos {65^ \circ } + \cos {25^ \circ }\sin {65^ \circ }
As we know that,
65+25=9065 + 25 = 90
Hence 25=906525 = 90 - 65 so we can substitute 2525 with 902590 - 25 .
x=sin25cos65+cos25sin65 x=sin(9065)cos65+cos(9065)sin65  x = \sin {25^ \circ }\cos {65^ \circ } + \cos {25^ \circ }\sin {65^ \circ } \\\ x = \sin {(90 - 65)^ \circ }\cos {65^ \circ } + \cos {(90 - 65)^ \circ }\sin {65^ \circ } \\\
We know that,
cos(90θ)=sinθ\cos (90 - \theta ) = \sin \theta
sin(90θ)=cosθ\sin (90 - \theta ) = \cos \theta
Applying the above relation in the expression to get,
x=cos65cos65+sin65sin65x = \cos {65^ \circ }\cos {65^ \circ } + \sin {65^ \circ }\sin {65^ \circ }
We know sinx×sinx=sin2x\sin x \times \sin x = {\sin ^2}x and cosx×cosx=cos2x\cos x \times \cos x = {\cos ^2}x
then substitute in it.to get,
x=cos265+sin265x = {\cos ^2}{65^ \circ } + {\sin ^2}{65^ \circ }
By using the identity,
sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 ,
The above expression becomes,
x=cos265+sin265 x=1  x = {\cos ^2}{65^ \circ } + {\sin ^2}{65^ \circ } \\\ x = 1 \\\
Hence,
The value of expression is,
sin25cos65+cos25sin65=1\sin {25^ \circ }\cos {65^ \circ } + \cos {25^ \circ }\sin {65^ \circ } = 1

Note: We can solve this type of question for that firstly we need to find an expression where it is related to trigonometric ratios of complementary angles, and then find the expression containing trigonometric functions can be evaluated from the relation of trigonometric identities.We can also solve this question by using formula sin(A+B)=sinAcosB+cosAsinB\sin(A+B)=\sin A \cos B + \cos A \sin B ,we get A=25A=25^\circ and B=65B=65^\circ So, sin(A+B)=sin(65+25)=sin90=1\sin (A+B) = \sin (65 + 25)=\sin 90 =1 we get same answer.