Solveeit Logo

Question

Question: Evaluate \({{i}^{37}}+\dfrac{1}{{{i}^{67}}}\) ....

Evaluate i37+1i67{{i}^{37}}+\dfrac{1}{{{i}^{67}}} .

Explanation

Solution

To evaluate i37+1i67{{i}^{37}}+\dfrac{1}{{{i}^{67}}} , we will express the powers of i in terms of 4 so that we can easily simplify the even powers of i. We will write 37 as (4×9)+1\left( 4\times 9 \right)+1 and 67 as (4×16)+3\left( 4\times 16 \right)+3 and substitute it in the given expression. We will then use the exponential rules am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} and (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} to simplify.

Complete step by step solution:
We have to evaluate i37+1i67{{i}^{37}}+\dfrac{1}{{{i}^{67}}} . We have to express the powers of i in terms of 4 so that we can easily simplify the even powers of i.
Let us write 37 as (4×9)+1\left( 4\times 9 \right)+1 and 67 as (4×16)+3\left( 4\times 16 \right)+3 .
i37+1i67=i(4×9)+1+1i(4×16)+3\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{i}^{\left( 4\times 9 \right)+1}}+\dfrac{1}{{{i}^{\left( 4\times 16 \right)+3}}}
We know that am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} . Therefore, we can write the terms in i as
i37+1i67=i(4×9)×i+1i(4×16)×i3\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{i}^{\left( 4\times 9 \right)}}\times i+\dfrac{1}{{{i}^{\left( 4\times 16 \right)}}\times {{i}^{3}}}
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} . Therefore, we can write the above equation as
i37+1i67=(i4)9×i+1(i4)16×i3...(i)\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{\left( {{i}^{4}} \right)}^{9}}\times i+\dfrac{1}{{{\left( {{i}^{4}} \right)}^{16}}\times {{i}^{3}}}...\left( i \right)
We know that i=1i=\sqrt{-1} . Let us square both the sides.
i2=(1)2=1 i4=(i2)2=(1)2=1 \begin{aligned} & {{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1 \\\ & \Rightarrow {{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}={{\left( -1 \right)}^{2}}=1 \\\ \end{aligned}
Let us substitute the above value in equation (i).

& \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{1}^{9}}\times i+\dfrac{1}{{{1}^{16}}\times {{i}^{3}}} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=1\times i+\dfrac{1}{1\times {{i}^{3}}} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+\dfrac{1}{{{i}^{3}}} \\\ \end{aligned}$$ We know that ${{i}^{3}}=\left( {{i}^{2}} \right)\times i=-i$ . Therefore, we can write the above equation as $$\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+\dfrac{1}{-i} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{1}{i} \\\ \end{aligned}$$ Let us multiply and dive the second term of RHS by i. $$\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{1}{i}\times \dfrac{i}{i} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{i}{{{i}^{2}}} \\\ \end{aligned}$$ We know that ${{i}^{2}}=-1$ . The, we can write the above equation as $$\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{i}{-1} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+\dfrac{i}{1} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+i \\\ \end{aligned}$$ Let us add the RHS. $$\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=2i$$ **Therefore, the value of ${{i}^{37}}+\dfrac{1}{{{i}^{67}}}$ is $2i$.** **Note:** Students must know the value of I to find the powers of i. They must firstly change the big exponents to a power that can be easily evaluated with i. We can also evaluate ${{i}^{37}}+\dfrac{1}{{{i}^{67}}}$ in the following manner. Let us write 37 as $36+1$ and 67 as $66+1$ . $\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{i}^{36+1}}+\dfrac{1}{{{i}^{66+1}}}$ We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ . Therefore, we can write the terms in i as $\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{i}^{36}}\times i+\dfrac{1}{{{i}^{66}}\times i}$ Now, we can write 36 as $4\times 9$ and 66 as $2\times 33$ . $\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{i}^{4\times 9}}\times i+\dfrac{1}{{{i}^{2\times 33}}\times i}$ We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Therefore, we can write the above equation as $\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{\left( {{i}^{4}} \right)}^{9}}\times i+\dfrac{1}{{{\left( {{i}^{2}} \right)}^{33}}\times i}$ We know that ${{i}^{2}}=-1$ and ${{i}^{4}}=1$ . $\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}={{1}^{9}}\times i+\dfrac{1}{{{\left( -1 \right)}^{33}}\times i}$ We know that -1 raised to an odd power is always -1. $\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=1\times i+\dfrac{1}{-1\times i} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{1}{i} \\\ \end{aligned}$ Let us multiply and dive the second term of RHS by i. $$\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{1}{i}\times \dfrac{i}{i} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{i}{{{i}^{2}}} \\\ \end{aligned}$$ We know that ${{i}^{2}}=-1$ . The, we can write the above equation as $$\begin{aligned} & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i-\dfrac{i}{-1} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+\dfrac{i}{1} \\\ & \Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=i+i \\\ \end{aligned}$$ Let us add the RHS. $$\Rightarrow {{i}^{37}}+\dfrac{1}{{{i}^{67}}}=2i$$