Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

Evaluate [i18+(1i)25]3.[i^{18}+(\frac{1}{i})^{25}]^3.

Answer

[i18+(1i)25]3[i^{18}+(\frac{1}{i})^{25}]^3

=[i4×4+2+(1i4×4+1)]3[i^{4×4+2}+(\frac{1}{i^{4×4+1}})]^3

=[i(4)4.i2+1(i4)6.i]3[i^{(4)^4.i^2}+\frac{1}{(i^{4})^6.i}]^3

=[i2+1i]3=[i^2+\frac{1}{i}]^3 [i4=1][i^{-4}=1]

=[1+1i×1i]3=[-1+\frac{1}{i}×\frac{1}{i}]^3 [i4=1][i^4=-1]

=[1+ii2]3=[-1+\frac{i}{i^2}]^3

=[1i]3=[-1-i]^3

=(1)3[1+i]3(-1)^3[1+i]^3

=[13+i3+3.1.i(1+i)]=[1^3+i^3+3.1.i(1+i)]

=[1+i3+3i+3i2]=-[1+i^3+3i+3i^2]

=[1+i3+3i+3i2]=-[1+i^3+3i+3i^2]

=[1i+3i3]=-[1-i+3i-3]

=[2+2i]=-[-2+2i]

=22i=2-2i