Solveeit Logo

Question

Question: Evaluate $\frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt...

Evaluate n=19910+nn=19910n\frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt{n}}}.

Answer

2+1\sqrt{2}+1

Explanation

Solution

Let S1=n=19910+nS_1 = \sum_{n=1}^{99} \sqrt{10 + \sqrt{n}} and S2=n=19910nS_2 = \sum_{n=1}^{99} \sqrt{10 - \sqrt{n}}. We use the property k=1Nf(k)=k=1Nf(N+1k)\sum_{k=1}^{N} f(k) = \sum_{k=1}^{N} f(N+1-k). So S1=n=19910+100nS_1 = \sum_{n=1}^{99} \sqrt{10 + \sqrt{100-n}}. S2=n=19910100nS_2 = \sum_{n=1}^{99} \sqrt{10 - \sqrt{100-n}}.

Now we consider S1+S2S_1+S_2. S1+S2=n=199(10+100n+10100n)S_1+S_2 = \sum_{n=1}^{99} (\sqrt{10 + \sqrt{100-n}} + \sqrt{10 - \sqrt{100-n}}). Let A=10A = 10, B=100nB = \sqrt{100-n}. The term is A+B+AB\sqrt{A+B} + \sqrt{A-B}. We know (A+B+AB)2=(A+B)+(AB)+2(A+B)(AB)=2A+2A2B2(\sqrt{A+B} + \sqrt{A-B})^2 = (A+B) + (A-B) + 2\sqrt{(A+B)(A-B)} = 2A + 2\sqrt{A^2-B^2}. So A+B+AB=2A+2A2B2\sqrt{A+B} + \sqrt{A-B} = \sqrt{2A + 2\sqrt{A^2-B^2}}. Substitute A=10A=10 and B=100nB=\sqrt{100-n}. A2=100A^2 = 100. B2=100nB^2 = 100-n. A2B2=100(100n)=nA^2-B^2 = 100 - (100-n) = n. So the term is 2(10)+2n=20+2n=2(10+n)\sqrt{2(10) + 2\sqrt{n}} = \sqrt{20 + 2\sqrt{n}} = \sqrt{2(10 + \sqrt{n})}. This is equal to 210+n\sqrt{2} \sqrt{10 + \sqrt{n}}.

So S1+S2=n=199210+n=2n=19910+n=2S1S_1+S_2 = \sum_{n=1}^{99} \sqrt{2} \sqrt{10 + \sqrt{n}} = \sqrt{2} \sum_{n=1}^{99} \sqrt{10 + \sqrt{n}} = \sqrt{2} S_1. S1+S2=2S1S_1+S_2 = \sqrt{2}S_1. S2=(21)S1S_2 = (\sqrt{2}-1)S_1. Therefore, S1S2=121=2+1(21)(2+1)=2+121=2+1\frac{S_1}{S_2} = \frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1.

Thus, \frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt{n}}}} = \sqrt{2}+1.