Question
Question: Evaluate $\frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt...
Evaluate n=1∑9910−nn=1∑9910+n.

2+1
Solution
Let S1=∑n=19910+n and S2=∑n=19910−n. We use the property ∑k=1Nf(k)=∑k=1Nf(N+1−k). So S1=∑n=19910+100−n. S2=∑n=19910−100−n.
Now we consider S1+S2. S1+S2=∑n=199(10+100−n+10−100−n). Let A=10, B=100−n. The term is A+B+A−B. We know (A+B+A−B)2=(A+B)+(A−B)+2(A+B)(A−B)=2A+2A2−B2. So A+B+A−B=2A+2A2−B2. Substitute A=10 and B=100−n. A2=100. B2=100−n. A2−B2=100−(100−n)=n. So the term is 2(10)+2n=20+2n=2(10+n). This is equal to 210+n.
So S1+S2=∑n=199210+n=2∑n=19910+n=2S1. S1+S2=2S1. S2=(2−1)S1. Therefore, S2S1=2−11=(2−1)(2+1)2+1=2−12+1=2+1.
Thus, \frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt{n}}}} = \sqrt{2}+1.