Question
Mathematics Question on geometric progression
Evaluate k=1∑11 (2 + 3k).
Answer
k=1∑11(2+3k)
k=1∑11(2)+k=1∑11(3k)=2(11)+k=1∑11(3k)=22+k=1∑11(3k)....(1)k=1∑113k=31+32+33+...311
The terms of this sequence 3, 32,33 , … forms a G.P.
sn=r−1a(rn−1)
⇒ s11 = 3−13[(3)11−1]
⇒ s11=23311−1
∴k=1∑113k=23(311−1)
Substituting this value in equation (1), we obtain
k=1∑11(2+3k)=22+23(311−1)