Solveeit Logo

Question

Mathematics Question on geometric progression

Evaluate k=111\displaystyle\sum_{k=1}^{11} (2 + 3k).

Answer

k=111(2+3k)\displaystyle\sum_{k=1}^{11} (2+3^{k})

k=111(2)+k=111(3k)=2(11)+k=111(3k)=22+k=111(3k)....(1)k=1113k=31+32+33+...311\displaystyle\sum_{k=1}^{11} (2)+ \displaystyle\sum_{k=1}^{11} (3^{k})= 2(11)+\displaystyle\sum_{k=1}^{11} (3^{k})=22+\displaystyle\sum_{k=1}^{11} (3^{k}) ....(1) \displaystyle\sum_{k=1}^{11} 3^{k}= 3^1+3^2+3^3+...3^{11}

The terms of this sequence 3, 32,333^2,3^3 , … forms a G.P.

sn=a(rn1)r1s_{n} = \frac{a(r^n-1)}{r-1}

s11s_{11} = 3[(3)111]31\frac{3[(3)^{11}-1]}{3-1}

s11=323111s_{11}=\frac{3}{2}3^{11}-1

k=1113k=32(3111)\displaystyle\sum_{k=1}^{11} 3^{k}=\frac{3}{2}(3^{11}-1)

Substituting this value in equation (1), we obtain

k=111(2+3k)=22+32(3111)\displaystyle\sum_{k=1}^{11} (2+3^{k}) = 22+\frac{3}{2}(3^{11}-1)