Solveeit Logo

Question

Question: Evaluate: \(\displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1}\)...

Evaluate: limx1x151x101\displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1}

Explanation

Solution

To evaluate the value of the given question, we will apply the limit and will check if we get the answer or not. If we do not get the answer, we will divide with a function (x1)\left( x-1 \right) in the numerator and denominator of a given question to make calculation easy. After that we will get the limit function in the form of limxaxnanxa\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a} and the limit function limxaxnanxa\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a} is equal to nan1n{{a}^{n-1}}. We will use this formula in the given question and will simplify to get the answer.

Complete step by step answer:
Since, the given limit function is:
=limx1x151x101= \displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1}
Now, we will divide by (x1)\left( x-1 \right) in the numerator and denominator of this limit function as:
=limx1(x151x1)(x101x1)= \displaystyle \lim_{x \to 1}\dfrac{\left( \dfrac{{{x}^{15}}-1}{x-1} \right)}{\left( \dfrac{{{x}^{10}}-1}{x-1} \right)}
We can write the above limit function as:
=limx1(x151x1)limx1(x101x1)= \dfrac{\displaystyle \lim_{x \to 1}\left( \dfrac{{{x}^{15}}-1}{x-1} \right)}{\displaystyle \lim_{x \to 1}\left( \dfrac{{{x}^{10}}-1}{x-1} \right)}
Here, we get the limit function in the form of limxaxnanxa\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a} that is equal to nan1n{{a}^{n-1}}. So, we will substitute 1515 for nn in the numerator and 1010 for nn in the denominator and will get 15(1)15115{{\left( 1 \right)}^{15-1}} for numerator and 10(1)10110{{\left( 1 \right)}^{10-1}} for denominator as:
=15(1)15110(1)101= \dfrac{15{{\left( 1 \right)}^{15-1}}}{10{{\left( 1 \right)}^{10-1}}}
After doing required calculation in the above fraction as:
=15(1)1410(1)9= \dfrac{15{{\left( 1 \right)}^{14}}}{10{{\left( 1 \right)}^{9}}}
As we know that any power of 11 is always 11. So, we will have from the above step as:
=15×(1)10×(1)= \dfrac{15\times \left( 1 \right)}{10\times \left( 1 \right)}
The multiplication of any number with one always gives that number as:
=1510= \dfrac{15}{10}
Now, we will simplify it into simplest form of fraction as:
=32= \dfrac{3}{2}
Hence, the value of limit function limx1x151x101\displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1} is 32\dfrac{3}{2}.

Note: For any limit function, we can use some techniques to evaluate the value of it if the limit function provides its values in the form of 00\dfrac{0}{0} after applying the limit. Here are some methods such as putting the value of the limit, factorization, rationalization, finding the least common denominator L-Hospital rule, etc.