Question
Question: Evaluate \(\displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\...
Evaluate \displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\cdot {{4}^{x-1}}-3x \right)}{\left\\{ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi x} .
Solution
We have to substitute x=1+h . When x→1 , we can write from this equation that h→0 . Then, we have to simplify the expression using logarithmic rules. We have to convert the expression in such a way that we can use the formulas x→0limxlog(1+x)=1 and x→0limxsinx=1 . We have to apply the L-Hospitals rule to simplify further.
Complete step-by-step solution:
We have to evaluate \displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\cdot {{4}^{x-1}}-3x \right)}{\left\\{ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi x} .
Let us substitute x=1+h . When x→1 , we can write from this equation that h→0 . Let us substitute the values in the given expression.
\begin{aligned}
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( \log \left( 1+1+h \right)-\log 2 \right)\left( 3\cdot {{4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left\\{ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( \log \left( 2+h \right)-\log 2 \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\
\end{aligned}
We know that loga−logb=log(ba) . Therefore, we can write the above equation as
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( \dfrac{2+h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)}
We can write (22+h) as 1+2h .
\begin{aligned}
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\
\end{aligned}
Let us apply distributive property on sinπ(1+h) .
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \left( \pi +\pi h \right)}
We know that sin(a+b)=sinacosb+cosasinb . Therefore, the above equation becomes
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\left( \sin \pi \cos \pi h+\cos \pi \sin \pi h \right)}
We know that sinπ=0 and cosπ=−1 . We can write the above equation as
\begin{aligned}
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\left( 0\times \cos \pi h+-1\times \sin \pi h \right)} \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi h} \\\
\end{aligned}
Let us multiply and divide the denominator by πh .
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\dfrac{\sin \pi h}{\pi h}\times \pi h}
We have to multiply and divide the denominator by 2.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\dfrac{\sin \pi h}{\pi h}\times \dfrac{\pi h}{2}\times 2}
We know that x→alimg(x)f(x)=x→alimg(x)x→alimf(x) and x→alimf(x)g(x)=x→alimf(x)×x→alimg(x) .
\Rightarrow \dfrac{\displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}}{\displaystyle \lim_{h\to 0}\dfrac{\sin \pi h}{\pi h}}\displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi }
We know that x→0limxlog(1+x)=1 and x→0limxsinx=1 .
\begin{aligned}
& \Rightarrow 1\times \displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi } \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi } \\\
\end{aligned}
We have to take the common factor 3 outside from the numerator.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left( {{4}^{h}}-1-h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi }
We can see that when we apply the limit, we will get the result in 00 . Therefore, we have to apply L'Hospital's Rule. According to this rule, we will find the derivative of the numerator and the denominator.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\dfrac{d}{dh}\left\\{ 3\left( {{4}^{h}}-1-h \right) \right\\}}{\dfrac{d}{dh}\left[ -2\pi \left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\} \right]}
We know that dxdax=adxdx .
\begin{aligned}
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\dfrac{d}{dh}\left( {{4}^{h}}-1-h \right)}{-2\pi \dfrac{d}{dh}\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}} \\\
& \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left[ \dfrac{d}{dh}{{4}^{h}}-\dfrac{d}{dh}1-\dfrac{d}{dh}h \right]}{-2\pi \left[ \dfrac{d}{dh}{{\left( 8+h \right)}^{\dfrac{1}{3}}}-\dfrac{d}{dh}{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]}...\left( i \right) \\\
\end{aligned}
Let us consider y=4h...(iii) . We have to take logarithms on both sides.
⇒logy=log4h
We know that logxa=alogx .
⇒logy=hlog4
Let us differentiate both the sides with respect to h. We know that dxdlogex=x1 and dxdax=adxdx . Therefore, the above equation becomes
⇒y1dhdy=loge4⇒dhdy=yloge4
We have to substitute (iii) in the above equation.
⇒dhdy=4hloge4
Let us substitute the above value in the equation (i).
⇒h→0lim−2πdhd(8+h)31−dhd(4+3h)213[4hloge4−dhd1−dhdh]
We know that dxda=0 and dxdxn=nxn−1 . Therefore, the above equation becomes
⇒h→0lim−2π31(8+h)31−1−21(4+3h)21−1×33[4hloge4−0−1]⇒h→0lim−2π31(8+h)−32−23(4+3h)−213[4hloge4−1]
Now, let us apply the limit.
⇒−2π31(8+0)−32−23(4+0)−213[40loge4−1]⇒−2π31⋅8−32−23⋅4−213[log4e−1]...(ii)
Let us evaluate 8−32 .
⇒8−32=8321
We know that (am)n=amn .
⇒8−32=(82)311
⇒8−32=3821
⇒8−32=3641
⇒8−32=41...(iii)
Now, let us find 4−21 .
⇒4−21=41=21...(iv)
We have to substitute (iii) and (iv) in equation (ii).
⇒−2π[31⋅41−23⋅21]3[loge4−1]=−2π[121−43]3[loge4−1]=−2π×12−83[loge4−1]=−2π×3−23[loge4−1]
Let us simplify the above expression.
⇒4π3[loge4−1]×3=4π9[loge4−1]
We know that logee=1 . Therefore, we can write the above equation as
⇒4π9[loge4−logee]
We know that loga−logb=log(ba) . Therefore, we can write the above equation as