Solveeit Logo

Question

Question: Evaluate \(\displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\...

Evaluate \displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\cdot {{4}^{x-1}}-3x \right)}{\left\\{ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi x} .

Explanation

Solution

We have to substitute x=1+hx=1+h . When x1x \to 1 , we can write from this equation that h0h\to 0 . Then, we have to simplify the expression using logarithmic rules. We have to convert the expression in such a way that we can use the formulas limx0log(1+x)x=1\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+x \right)}{x}=1 and limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 . We have to apply the L-Hospitals rule to simplify further.

Complete step-by-step solution:
We have to evaluate \displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\cdot {{4}^{x-1}}-3x \right)}{\left\\{ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi x} .
Let us substitute x=1+hx=1+h . When x1x \to 1 , we can write from this equation that h0h\to 0 . Let us substitute the values in the given expression.
\begin{aligned} & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( \log \left( 1+1+h \right)-\log 2 \right)\left( 3\cdot {{4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left\\{ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( \log \left( 2+h \right)-\log 2 \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\ \end{aligned}
We know that logalogb=log(ab)\log a-\log b=\log \left( \dfrac{a}{b} \right) . Therefore, we can write the above equation as
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( \dfrac{2+h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)}
We can write (2+h2)\left( \dfrac{2+h}{2} \right) as 1+h21+\dfrac{h}{2} .
\begin{aligned} & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3\left( 1+h \right) \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 1+3+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi \left( 1+h \right)} \\\ \end{aligned}
Let us apply distributive property on sinπ(1+h)\sin \pi \left( 1+h \right) .
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \left( \pi +\pi h \right)}
We know that sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b . Therefore, the above equation becomes
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\left( \sin \pi \cos \pi h+\cos \pi \sin \pi h \right)}
We know that sinπ=0\sin \pi =0 and cosπ=1\cos \pi =-1 . We can write the above equation as
\begin{aligned} & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\left( 0\times \cos \pi h+-1\times \sin \pi h \right)} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi h} \\\ \end{aligned}
Let us multiply and divide the denominator by πh\pi h .
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\dfrac{\sin \pi h}{\pi h}\times \pi h}
We have to multiply and divide the denominator by 2.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}\dfrac{\sin \pi h}{\pi h}\times \dfrac{\pi h}{2}\times 2}
We know that limxaf(x)g(x)=limxaf(x)limxag(x)\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)} and limxaf(x)g(x)=limxaf(x)×limxag(x)\displaystyle \lim_{x \to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x \to a}f\left( x \right)\times \displaystyle \lim_{x \to a}g\left( x \right) .
\Rightarrow \dfrac{\displaystyle \lim_{h\to 0}\dfrac{\log \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}}{\displaystyle \lim_{h\to 0}\dfrac{\sin \pi h}{\pi h}}\displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi }
We know that limx0log(1+x)x=1\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+x \right)}{x}=1 and limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 .
\begin{aligned} & \Rightarrow 1\times \displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi } \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\left( 3\cdot {{4}^{h}}-3-3h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi } \\\ \end{aligned}
We have to take the common factor 3 outside from the numerator.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left( {{4}^{h}}-1-h \right)}{-\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}2\pi }
We can see that when we apply the limit, we will get the result in 00\dfrac{0}{0} . Therefore, we have to apply L'Hospital's Rule. According to this rule, we will find the derivative of the numerator and the denominator.
\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{\dfrac{d}{dh}\left\\{ 3\left( {{4}^{h}}-1-h \right) \right\\}}{\dfrac{d}{dh}\left[ -2\pi \left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\} \right]}
We know that ddxax=addxx\dfrac{d}{dx}ax=a\dfrac{d}{dx}x .
\begin{aligned} & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\dfrac{d}{dh}\left( {{4}^{h}}-1-h \right)}{-2\pi \dfrac{d}{dh}\left\\{ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right\\}} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left[ \dfrac{d}{dh}{{4}^{h}}-\dfrac{d}{dh}1-\dfrac{d}{dh}h \right]}{-2\pi \left[ \dfrac{d}{dh}{{\left( 8+h \right)}^{\dfrac{1}{3}}}-\dfrac{d}{dh}{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]}...\left( i \right) \\\ \end{aligned}
Let us consider y=4h...(iii)y={{4}^{h}}...\left( iii \right) . We have to take logarithms on both sides.
logy=log4h\Rightarrow \log y=\log {{4}^{h}}
We know that logxa=alogx\log {{x}^{a}}=a\log x .
logy=hlog4\Rightarrow \log y=h\log 4
Let us differentiate both the sides with respect to h. We know that ddxlogex=1x\dfrac{d}{dx}{{\log }_{e}}x=\dfrac{1}{x} and ddxax=addxx\dfrac{d}{dx}ax=a\dfrac{d}{dx}x . Therefore, the above equation becomes
1ydydh=loge4 dydh=yloge4 \begin{aligned} & \Rightarrow \dfrac{1}{y}\dfrac{dy}{dh}={{\log }_{e}}4 \\\ & \Rightarrow \dfrac{dy}{dh}=y{{\log }_{e}}4 \\\ \end{aligned}
We have to substitute (iii) in the above equation.
dydh=4hloge4\Rightarrow \dfrac{dy}{dh}={{4}^{h}}{{\log }_{e}}4
Let us substitute the above value in the equation (i).
limh03[4hloge4ddh1ddhh]2π[ddh(8+h)13ddh(4+3h)12]\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left[ {{4}^{h}}{{\log }_{e}}4-\dfrac{d}{dh}1-\dfrac{d}{dh}h \right]}{-2\pi \left[ \dfrac{d}{dh}{{\left( 8+h \right)}^{\dfrac{1}{3}}}-\dfrac{d}{dh}{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]}
We know that ddxa=0\dfrac{d}{dx}a=0 and ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} . Therefore, the above equation becomes
limh03[4hloge401]2π[13(8+h)13112(4+3h)121×3] limh03[4hloge41]2π[13(8+h)2332(4+3h)12] \begin{aligned} & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left[ {{4}^{h}}{{\log }_{e}}4-0-1 \right]}{-2\pi \left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{1}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}}\times 3 \right]} \\\ & \Rightarrow \displaystyle \lim_{h\to 0}\dfrac{3\left[ {{4}^{h}}{{\log }_{e}}4-1 \right]}{-2\pi \left[ \dfrac{1}{3}{{\left( 8+h \right)}^{-\dfrac{2}{3}}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{-\dfrac{1}{2}}} \right]} \\\ \end{aligned}
Now, let us apply the limit.
3[40loge41]2π[13(8+0)2332(4+0)12] 3[log4e1]2π[1382332412]...(ii) \begin{aligned} & \Rightarrow \dfrac{3\left[ {{4}^{0}}{{\log }_{e}}4-1 \right]}{-2\pi \left[ \dfrac{1}{3}{{\left( 8+0 \right)}^{-\dfrac{2}{3}}}-\dfrac{3}{2}{{\left( 4+0 \right)}^{-\dfrac{1}{2}}} \right]} \\\ & \Rightarrow \dfrac{3\left[ \log {{4}_{e}}-1 \right]}{-2\pi \left[ \dfrac{1}{3}\cdot {{8}^{-\dfrac{2}{3}}}-\dfrac{3}{2}\cdot {{4}^{-\dfrac{1}{2}}} \right]}...\left( ii \right) \\\ \end{aligned}
Let us evaluate 823{{8}^{-\dfrac{2}{3}}} .
823=1823\Rightarrow {{8}^{-\dfrac{2}{3}}}=\dfrac{1}{{{8}^{\dfrac{2}{3}}}}
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} .
823=1(82)13\Rightarrow {{8}^{-\dfrac{2}{3}}}=\dfrac{1}{{{\left( {{8}^{2}} \right)}^{\dfrac{1}{3}}}}
823=1823\Rightarrow {{8}^{-\dfrac{2}{3}}}=\dfrac{1}{\sqrt[3]{{{8}^{2}}}}
823=1643\Rightarrow {{8}^{-\dfrac{2}{3}}}=\dfrac{1}{\sqrt[3]{64}}
823=14...(iii)\Rightarrow {{8}^{-\dfrac{2}{3}}}=\dfrac{1}{4}...\left( iii \right)
Now, let us find 412{{4}^{-\dfrac{1}{2}}} .
412=14=12...(iv)\Rightarrow {{4}^{-\dfrac{1}{2}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}...\left( iv \right)
We have to substitute (iii) and (iv) in equation (ii).
3[loge41]2π[13143212] =3[loge41]2π[11234] =3[loge41]2π×812 =3[loge41]2π×23 \begin{aligned} & \Rightarrow \dfrac{3\left[ {{\log }_{e}}4-1 \right]}{-2\pi \left[ \dfrac{1}{3}\cdot \dfrac{1}{4}-\dfrac{3}{2}\cdot \dfrac{1}{2} \right]} \\\ & =\dfrac{3\left[ {{\log }_{e}}4-1 \right]}{-2\pi \left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\\ & =\dfrac{3\left[ {{\log }_{e}}4-1 \right]}{-2\pi \times \dfrac{-8}{12}} \\\ & =\dfrac{3\left[ {{\log }_{e}}4-1 \right]}{-2\pi \times \dfrac{-2}{3}} \\\ \end{aligned}
Let us simplify the above expression.
3[loge41]×34π =9[loge41]4π \begin{aligned} & \Rightarrow \dfrac{3\left[ {{\log }_{e}}4-1 \right]\times 3}{4\pi } \\\ & =\dfrac{9\left[ {{\log }_{e}}4-1 \right]}{4\pi } \\\ \end{aligned}
We know that logee=1{{\log }_{e}}e=1 . Therefore, we can write the above equation as
9[loge4logee]4π\Rightarrow \dfrac{9\left[ {{\log }_{e}}4-{{\log }_{e}}e \right]}{4\pi }
We know that logalogb=log(ab)\log a-\log b=\log \left( \dfrac{a}{b} \right) . Therefore, we can write the above equation as

& \Rightarrow \dfrac{9{{\log }_{e}}\left( \dfrac{4}{e} \right)}{4\pi } \\\ & =\dfrac{9}{4\pi }{{\log }_{e}}\left( \dfrac{4}{e} \right) \\\ \end{aligned}$$ Hence, the value of $\displaystyle \lim_{x \to 1}\dfrac{\left( \log \left( 1+x \right)-\log 2 \right)\left( 3\cdot {{4}^{x-1}}-3x \right)}{\left\\{ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right\\}\sin \pi x}$ is $$\dfrac{9}{4\pi }{{\log }_{e}}\left( \dfrac{4}{e} \right)$$ . **Note:** Students must be thorough with logarithmic rules and properties. They must deeply learn rules associated with limits and how to evaluate limits using L-Hospitals rule. Students must know to find the derivatives.