Solveeit Logo

Question

Question: Evaluate \(\dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}}\). A) \(1\) B) \(\dfrac{1}{...

Evaluate tan225cot81cot69cot261+tan21\dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}}.
A) 11
B) 12\dfrac{1}{{\sqrt 2 }}
C) 3\sqrt 3
D) 13\dfrac{1}{{\sqrt 3 }}

Explanation

Solution

The given expression contains terms in the trigonometric ratios tan\tan and cot\cot . We have relations connecting these two. Thus we get every term with angles 99 or 2121. Then we can apply the sum formula of tan\tan . Simplifying and substituting the known values we get the answer.

Useful formula:
For every angle θ\theta we have the following trigonometric relations.
tan(270θ)=cotθ\tan (270 - \theta ) = \cot \theta
cot(90θ)=tanθ\cot (90 - \theta ) = \tan \theta
Also we have,
tanA+B=tanA+tanB1tanAtanB\tan A + B = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}

Complete step by step solution:
The given expression is tan225cot81cot69cot261+tan21\dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}}.
We can consider the terms of the expression individually.
We know that tan(270θ)=cotθ\tan (270 - \theta ) = \cot \theta
This gives, tan225=tan(27045)=cot45\tan 225 = \tan (270 - 45) = \cot 45
Also we have, cot45=1tan45\cot 45 = \dfrac{1}{{\tan 45}} and tan45\tan 45 equals one.
So we get, cot45=11=1\cot 45 = \dfrac{1}{1} = 1
This gives, tan225=1\tan 225 = 1 _____(i)
Now we have,
cot81\cot 81 can be written as cot(909)\cot (90 - 9).
Also we know,
cot(90θ)=tanθ\cot (90 - \theta ) = \tan \theta
So we get,
cot(909)=tan9\cot (90 - 9) = \tan 9
This gives,
cot81=tan9\cot 81 = \tan 9 __(ii)
Now consider the next term.
cot69\cot 69 can be written as cot(9021)\cot (90 - 21).
And cot(9021)=tan21\cot (90 - 21) = \tan 21
This gives,
cot69=tan21\cot 69 = \tan 21
(iii)
Now we have 261=2709261 = 270 - 9
This gives, cot261=cot(2709)\cot 261 = \cot (270 - 9)
So we get, cot261=tan9\cot 261 = \tan 9 _____(iv)
Thus we converted the terms into our convenience to solve them.

Combining the equations (i), (ii), (iii) and (iv) we get,
tan225cot81cot69cot261+tan21=1tan9tan21tan9+tan21\dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}} = \dfrac{{1 - \tan 9\tan 21}}{{\tan 9 + \tan 21}} _____()
We know that tanA+B=tanA+tanB1tanAtanB\tan A + B = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Substituting A=9,B=21A = 9,B = 21 in the above result we have,
tan(9+21)=tan9+tan211tan9tan21\tan (9 + 21) = \dfrac{{\tan 9 + \tan 21}}{{1 - \tan 9\tan 21}}
Comparing it with equation (
) we have,
tan225cot81cot69cot261+tan21=1tan(9+21)\dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}} = \dfrac{1}{{\tan (9 + 21)}}
tan225cot81cot69cot261+tan21=1tan30\Rightarrow \dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}} = \dfrac{1}{{\tan 30}}
We know that tan30=13\tan 30 = \dfrac{1}{{\sqrt 3 }}
Substituting this in the above equation we get,
tan225cot81cot69cot261+tan21=113\Rightarrow \dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}} = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}
tan225cot81cot69cot261+tan21=3\Rightarrow \dfrac{{\tan 225 - \cot 81\cot 69}}{{\cot 261 + \tan 21}} = \sqrt 3

Therefore the answer is option C.

Note:
We converted the ratios of tan\tan and cot\cot into each other. Since tan\tan and cot\cot are positive in the first and third quadrant we get positive results. Thus we could apply the sum formula. Identifying the given expressions and their conversion is important here.