Question
Question: Evaluate\[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 4...
Evaluate32cosec258−32cot58.tan32−35tan13tan37tan45tan53tan77. All angles in degrees.
Solution
Hint: In these types of questions use the transformation formula and some basic concepts of trigonometry.
32cosec258−32cot58.tan32−35tan13tan37tan45tan53tan77
Complete step-by-step answer:
Since we know by the trigonometric formula tan (90-x) =cotx (where x is an angle)
So tan77, tan53 can be written as tan (90-13), tan (90-37)
32cosec258−32cot58tan32−35tan13tan37tan45tan(90−37)tan(90−13)
=32cosec258−32cot58tan32−35tan13tan37tan45cot37cot13 (By the formula tan (90-x) =cotx)
=32cosec258−32cot58tan32−35tan13tan37tan45tan371tan131 (By the formula cotx=tanx1)
=32cosec258−32cot58tan32−35tan45
Now putting the value of tan 45 i.e. tan 45= 1
=32cosec258−32cot58tan32−35
=32cosec258−32cot58tan(90−58)−35 (By the formula tan (90-x) =cotx)
=32cosec258−32cot258−35= 32(cosec258−cot258)−35
By the trigonometric formula cosec2x−cot2x=1
=32(1)−35 {Since(cosec258−cot258)=1}
32−35=−1
So 32cosec258−32cot58.tan32−35tan13tan37tan45tan53tan77 = −1
Note: In these types of questions use the transformations formulas to simplify the question use trigonometric values like tan45=1 and some trigonometric identities like cosec2x−cot2x=1 to simplify the result as much as possible.