Question
Question: Evaluate \(\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }\)....
Evaluate 31sec60∘−cosec60∘.
Solution
We know the magnitude of the trigonometric ratios of standard angles. Therefore, substitute the values of sec60∘ and cosec60∘ in the given expression to find the required answer.
Formula used: Trigonometric ratios of the standard angles are given by:
| 0°| 30°| 45°| 60°| 90°
---|---|---|---|---|---
sinx| 0| 21 | 21 | 23 | 1
cosx| 1| 23| 21| 21| 0
tanx| 0| 31 | 1| 3| Undefined
cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
secx| 1| 32| 2| 2| Undefined
Therefore, sec60∘=2 and cosec60∘=32
Complete step-by-step solution:
From the above table, let’s recall that sec60∘=2 and cosec60∘=32
Therefore, substituting the values in the given expression, we get
31sec60∘−cosec60∘
=31×2−32
=32−32
=0
Therefore the value of 31sec60∘−cosec60∘ is 0.
Note: Note the following important formulae of trigonometry:
cosx=secx1 , sinx=cosecx1 , tanx=cotx1
sin2x+cos2x=1
sec2x−tan2x=1
cosec2x−cot2x=1
sin(−x)=−sinx
cos(−x)=cosx
tan(−x)=−tanx
sin(2nπ±x)=sinx , period 2π or 360∘
cos(2nπ±x)=cosx , period 2π or 360∘
tan(nπ±x)=tanx , period π or 180∘
Sign convention:
sin2x=2sinxcosx
cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1
tan2x=1−tan2x2tanx=cotx−tanx2