Solveeit Logo

Question

Question: Evaluate \(\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }\)....

Evaluate 13sec60cosec60\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }.

Explanation

Solution

We know the magnitude of the trigonometric ratios of standard angles. Therefore, substitute the values of sec60\sec {60^ \circ } and cosec60{\text{cosec}}{60^ \circ } in the given expression to find the required answer.

Formula used: Trigonometric ratios of the standard angles are given by:

| 0°| 30°| 45°| 60°| 90°
---|---|---|---|---|---
sinx| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
cosx| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
tanx| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
cotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
secx| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined

Therefore, sec60=2\sec {60^ \circ } = 2 and cosec60=23{\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}

Complete step-by-step solution:
From the above table, let’s recall that sec60=2\sec {60^ \circ } = 2 and cosec60=23{\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}
Therefore, substituting the values in the given expression, we get
13sec60cosec60\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }
=13×223= \dfrac{1}{{\sqrt 3 }} \times 2 - \dfrac{2}{{\sqrt 3 }}
=2323= \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 }}
=0= 0

Therefore the value of 13sec60cosec60\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ } is 0.

Note: Note the following important formulae of trigonometry:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
sin(x)=sinx\sin ( - x) = - \sin x
cos(x)=cosx\cos ( - x) = \cos x
tan(x)=tanx\tan ( - x) = - \tan x
sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
cos2x=cos2xsin2x=12sin2x=2cos2x1\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1
tan2x=2tanx1tan2x=2cotxtanx\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}