Solveeit Logo

Question

Question: Evaluate \(\cos \left( {{{\tan }^{ - 1}}x} \right) = \) 1). \(\sqrt {1 + {x^2}} \) 2). \(\dfrac...

Evaluate cos(tan1x)=\cos \left( {{{\tan }^{ - 1}}x} \right) =
1). 1+x2\sqrt {1 + {x^2}}
2). 11+x2\dfrac{1}{{\sqrt {1 + {x^2}} }}
3). 1+x21 + {x^2}
4). None of these

Explanation

Solution

In order to solve the given equation, consider tan1x{\tan ^{ - 1}}x to be any variable, then using the properties of triangles like Pythagoras theorem and trigonometric ratios like tanθ=perpendicularbase\tan \theta = \dfrac{{perpendicular}}{{base}}, find the value of the variable, solve further and get the results.
Formula used:
tanθ=perpendicularbase\tan \theta = \dfrac{{perpendicular}}{{base}}
cosθ=basehypotenuse\cos \theta = \dfrac{{base}}{{hypotenuse}}

Complete step-by-step solution:
We are given the value cos(tan1x)\cos \left( {{{\tan }^{ - 1}}x} \right).
Considering the value of tan1x{\tan ^{ - 1}}x to be θ\theta , which can be numerically written as:
tan1x=θ{\tan ^{ - 1}}x = \theta
Multiplying both the sides by tan\tan , we get:
tan(tan1x)=tanθ\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta ……………………..(1)
Since, we know that in tan(tan1x)=tanθ\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta , the tan\tan will cancel tan1x{\tan ^{ - 1}}x, so we are left with tan(tan1x)=x\tan \left( {{{\tan }^{ - 1}}x} \right) = x, So substituting this value in equation (1), we get:
tan(tan1x)=tanθ\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta
x=tanθ\Rightarrow x = \tan \theta
Which can also be written as:
tanθ=x\Rightarrow \tan \theta = x …………………………..(2)
From Trigonometric ratios, we know that:
tanθ=perpendicularbase\Rightarrow \tan \theta = \dfrac{{perpendicular}}{{base}} ……..(3)
Equating equation (2) and equation (3), we get:
x=perpendicularbase\Rightarrow x = \dfrac{{perpendicular}}{{base}}
xx can also be written as x1\dfrac{x}{1}, as anything divided by 11 , gives the same answer:
Therefore,
x1=perpendicularbase\Rightarrow \dfrac{x}{1} = \dfrac{{perpendicular}}{{base}}
Drawing a right-angled triangle ABC with perpendicular of xx and base to be 11, perpendicular to each other at B:

Since, it is a right - angled triangle, so we can apply Pythagoras theorem:
AB2+BC2=AC2A{B^2} + B{C^2} = A{C^2}
Substituting the values, we get:
x2+12=AC2\Rightarrow {x^2} + {1^2} = A{C^2}
Taking square root both the sides, we get:
x2+12=AC2\Rightarrow \sqrt {{x^2} + {1^2}} = \sqrt {A{C^2}}
x2+1=AC\Rightarrow \sqrt {{x^2} + 1} = AC
AC=x2+1\Rightarrow AC = \sqrt {{x^2} + 1}
Therefore, hypotenuse =x2+1= \sqrt {{x^2} + 1}.
Since, we were given cos(tan1x)\cos \left( {{{\tan }^{ - 1}}x} \right), and we considered tan1x=θ{\tan ^{ - 1}}x = \theta , so substituting tan1x=θ{\tan ^{ - 1}}x = \theta in cos(tan1x)\cos \left( {{{\tan }^{ - 1}}x} \right), we get:
cos(tan1x)=cos(θ)\Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \left( \theta \right)
cos(tan1x)=cosθ\Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta …….(4)
From Trigonometric ratios, we know that cosθ=basehypotenuse\cos \theta = \dfrac{{base}}{{hypotenuse}}.
And, we can see from the triangle ABC, base =1 = 1 and hypotenuse =x2+1= \sqrt {{x^2} + 1}.
Substituting them in cosθ=basehypotenuse\cos \theta = \dfrac{{base}}{{hypotenuse}} , we get:
cosθ=basehypotenuse=1x2+1\cos \theta = \dfrac{{base}}{{hypotenuse}} = \dfrac{1}{{\sqrt {{x^2} + 1} }}
cosθ=1x2+1\Rightarrow \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}
Substituting this value in equation (4), we get:
cos(tan1x)=cosθ=1x2+1\Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}
cos(tan1x)=1x2+1\Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}
Therefore, cos(tan1x)=1x2+1\cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}.
Hence, Option 2 is correct.

Note: It’s important to follow the correct steps and solve step by step instead of solving it at once, otherwise it may lead to error. Do not forget to draw the rough diagram of the triangle in order to get the value of the hypotenuse.