Question
Question: Evaluate \[\cos \left( { - \dfrac{{8\pi }}{3}} \right)\] ?...
Evaluate cos(−38π) ?
Solution
Use the trigonometric properties to find the value of cos(−38π).
Since cos(−x)=cosx so evaluate cos(−38π)=cos(38π).
Write cos(38π)=cos(2π+32π) .
Then apply the trigonometric formula; cos(2π+x)=cosx.
Complete step by step answer:
We have to evaluate cos(−38π). The value of the negative angle of the cosine function is the same as the positive angle of the cosine function.
cos(−x)=cosx
⇒cos(−38π)=cos(38π)
Write the angle 38π=2π+32π.
⇒cos(38π)=cos(2π+32π)
According to the trigonometric formula; cos(2π+x)=cosx,
⇒cos(2π+32π)=cos(32π)
We can split the angle 32π as π−3π .
⇒cos(32π)=cos(π−3π)
Since cos(π−θ)=−cosθ we get,
⇒cos(π−3π)=−cos(3π)
And,
⇒−cos(3π)=−21
Note: Another Method:
We have to evaluate cos(−38π).
Write the angle −38π=−2π−32π.
⇒cos(38π)=cos(−2π−32π)
According to the trigonometric formula; cos(−2π−x)=cos(−x),
⇒cos(−2π−32π)=cos(−32π)
Apply the property, cos(−x)=cosx,
⇒cos(−32π)=cos(32π)
⇒cos(32π)=−21
The value of cos(−38π) is −21.