Solveeit Logo

Question

Question: Evaluate \[\cos \left( { - \dfrac{{8\pi }}{3}} \right)\] ?...

Evaluate cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right) ?

Explanation

Solution

Use the trigonometric properties to find the value of cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right).
Since cos(x)=cosx\cos ( - x) = \cos x so evaluate cos(8π3)=cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right) = \cos \left( {\dfrac{{8\pi }}{3}} \right).
Write cos(8π3)=cos(2π+2π3)\cos \left( {\dfrac{{8\pi }}{3}} \right) = \cos \left( {2\pi + \dfrac{{2\pi }}{3}} \right) .
Then apply the trigonometric formula; cos(2π+x)=cosx\cos (2\pi + x) = \cos x.

Complete step by step answer:
We have to evaluate cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right). The value of the negative angle of the cosine function is the same as the positive angle of the cosine function.
cos(x)=cosx\cos ( - x) = \cos x
cos(8π3)=cos(8π3)\Rightarrow \cos \left( { - \dfrac{{8\pi }}{3}} \right) = \cos \left( {\dfrac{{8\pi }}{3}} \right)
Write the angle 8π3=2π+2π3\dfrac{{8\pi }}{3} = 2\pi + \dfrac{{2\pi }}{3}.
cos(8π3)=cos(2π+2π3)\Rightarrow \cos \left( {\dfrac{{8\pi }}{3}} \right) = \cos \left( {2\pi + \dfrac{{2\pi }}{3}} \right)
According to the trigonometric formula; cos(2π+x)=cosx\cos (2\pi + x) = \cos x,
cos(2π+2π3)=cos(2π3)\Rightarrow \cos \left( {2\pi + \dfrac{{2\pi }}{3}} \right) = \cos \left( {\dfrac{{2\pi }}{3}} \right)
We can split the angle 2π3\dfrac{{2\pi }}{3} as ππ3\pi - \dfrac{\pi }{3} .
cos(2π3)=cos(ππ3)\Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right)
Since cos(πθ)=cosθ\cos (\pi - \theta ) = - \cos \theta we get,
cos(ππ3)=cos(π3)\Rightarrow \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \cos \left( {\dfrac{\pi }{3}} \right)
And,
cos(π3)=12\Rightarrow - \cos \left( {\dfrac{\pi }{3}} \right) = - \dfrac{1}{2}

Note: Another Method:
We have to evaluate cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right).
Write the angle 8π3=2π2π3 - \dfrac{{8\pi }}{3} = - 2\pi - \dfrac{{2\pi }}{3}.
cos(8π3)=cos(2π2π3)\Rightarrow \cos \left( {\dfrac{{8\pi }}{3}} \right) = \cos \left( { - 2\pi - \dfrac{{2\pi }}{3}} \right)
According to the trigonometric formula; cos(2πx)=cos(x)\cos ( - 2\pi - x) = \cos ( - x),
cos(2π2π3)=cos(2π3)\Rightarrow \cos \left( { - 2\pi - \dfrac{{2\pi }}{3}} \right) = \cos \left( { - \dfrac{{2\pi }}{3}} \right)
Apply the property, cos(x)=cosx\cos ( - x) = \cos x,
cos(2π3)=cos(2π3)\Rightarrow \cos \left( { - \dfrac{{2\pi }}{3}} \right) = \cos \left( {\dfrac{{2\pi }}{3}} \right)
cos(2π3)=12\Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = - \dfrac{1}{2}
The value of cos(8π3)\cos \left( { - \dfrac{{8\pi }}{3}} \right) is 12 - \dfrac{1}{2}.