Solveeit Logo

Question

Question: Evaluate \(\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos ...

Evaluate cosπ11+cos3π11+cos5π11+cos7π11+cos9π11=\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} =

  1. 12 - \dfrac{1}{2}
  2. 12\dfrac{1}{2}
  3. 11
  4. 1 - 1
Explanation

Solution

To find the sum of the given cosine functions, first we have to introduce a sine function, namely 2sinπ112\sin \dfrac{\pi }{{11}} by multiplying and dividing at the same time. Then we are to operate the functions using the required trigonometric formulas. Finally we will get a form of equation that can be operated or cancelled to get the required solution.

Complete step-by-step solution:
To find, cosπ11+cos3π11+cos5π11+cos7π11+cos9π11\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}.
Now, multiplying and dividing the terms with 2sinπ112\sin \dfrac{\pi }{{11}}, we get,
=2sinπ11(cosπ11+cos3π11+cos5π11+cos7π11+cos9π11)2sinπ11= \dfrac{{2\sin \dfrac{\pi }{{11}}\left( {\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}
Opening the brackets, we get,
=2sinπ11cosπ11+2sinπ11cos3π11+2sinπ11cos5π11+2sinπ11cos7π11+2sinπ11cos9π112sinπ11= \dfrac{{2\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} + 2\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}
Now, we know, 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta and 2sinθcosϕ=sin(θ+ϕ)sin(θϕ)2\sin \theta \cos \phi = \sin \left( {\theta + \phi } \right) - \sin \left( {\theta - \phi } \right).
Using these formulas in the terms of the above equation, gives us,
2sinπ11cosπ11=sin2π112\sin \dfrac{\pi }{{11}}\cos \dfrac{\pi }{{11}} = \sin \dfrac{{2\pi }}{{11}}
2sinπ11cos3π11=sin4π11sin2π112\sin \dfrac{\pi }{{11}}\cos \dfrac{{3\pi }}{{11}} = \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}
2sinπ11cos5π11=sin6π11sin4π112\sin \dfrac{\pi }{{11}}\cos \dfrac{{5\pi }}{{11}} = \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}
2sinπ11cos7π11=sin8π11sin6π112\sin \dfrac{\pi }{{11}}\cos \dfrac{{7\pi }}{{11}} = \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}
2sinπ11cos9π11=sin10π11sin8π112\sin \dfrac{\pi }{{11}}\cos \dfrac{{9\pi }}{{11}} = \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}
Replacing, these terms in the given series, gives us,
=sin2π11+(sin4π11sin2π11)+(sin6π11sin4π11)+(sin8π11sin6π11)+(sin10π11sin8π11)2sinπ11= \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \left( {\sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}}} \right) + \left( {\sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}}} \right) + \left( {\sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}}} \right) + \left( {\sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}
Opening the brackets and simplifying, we get,
=sin2π11+sin4π11sin2π11+sin6π11sin4π11+sin8π11sin6π11+sin10π11sin8π112sinπ11= \dfrac{{\sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{4\pi }}{{11}} - \sin \dfrac{{2\pi }}{{11}} + \sin \dfrac{{6\pi }}{{11}} - \sin \dfrac{{4\pi }}{{11}} + \sin \dfrac{{8\pi }}{{11}} - \sin \dfrac{{6\pi }}{{11}} + \sin \dfrac{{10\pi }}{{11}} - \sin \dfrac{{8\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}
We can see clearly that in the numerator all the terms get cancelled, except sin10π11\sin \dfrac{{10\pi }}{{11}}.
So,
=sin10π112sinπ11= \dfrac{{\sin \dfrac{{10\pi }}{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}
Now, we know, sin10π11=sin(ππ11)\sin \dfrac{{10\pi }}{{11}} = \sin \left( {\pi - \dfrac{\pi }{{11}}} \right)
Using this property, we get,
=sin(ππ11)2sinπ11= \dfrac{{\sin \left( {\pi - \dfrac{\pi }{{11}}} \right)}}{{2\sin \dfrac{\pi }{{11}}}}
Now, we know, sin(2π2θ)=sinθ\sin \left( {2\dfrac{\pi }{2} - \theta } \right) = \sin \theta .
So, using this property, we can clearly say that, sin(ππ11)=sin(2π2π11)=sinπ11\sin \left( {\pi - \dfrac{\pi }{{11}}} \right) = \sin \left( {2\dfrac{\pi }{2} - \dfrac{\pi }{{11}}} \right) = \sin \dfrac{\pi }{{11}}.
Therefore, we can write as,
=sinπ112sinπ11= \dfrac{{\sin \dfrac{\pi }{{11}}}}{{2\sin \dfrac{\pi }{{11}}}}
Now, cancelling the sinπ11\sin \dfrac{\pi }{{11}} in the numerator and denominator, we get,
cosπ11+cos3π11+cos5π11+cos7π11+cos9π11=12\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} = \dfrac{1}{2}
Therefore, the correct option is 2.

Note: Many a times, we may get confused and panic due to the complex angles in the cosine functions and feel that the solutions would be complex, but we had to just use simple and commonly used trigonometric properties to get the answer. Sometimes, we can also make calculation mistakes in solving the equations and using the trigonometric properties properly.