Question
Question: Evaluate \(\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos ...
Evaluate cos11π+cos113π+cos115π+cos117π+cos119π=
- −21
- 21
- 1
- −1
Solution
To find the sum of the given cosine functions, first we have to introduce a sine function, namely 2sin11π by multiplying and dividing at the same time. Then we are to operate the functions using the required trigonometric formulas. Finally we will get a form of equation that can be operated or cancelled to get the required solution.
Complete step-by-step solution:
To find, cos11π+cos113π+cos115π+cos117π+cos119π.
Now, multiplying and dividing the terms with 2sin11π, we get,
=2sin11π2sin11π(cos11π+cos113π+cos115π+cos117π+cos119π)
Opening the brackets, we get,
=2sin11π2sin11πcos11π+2sin11πcos113π+2sin11πcos115π+2sin11πcos117π+2sin11πcos119π
Now, we know, 2sinθcosθ=sin2θ and 2sinθcosϕ=sin(θ+ϕ)−sin(θ−ϕ).
Using these formulas in the terms of the above equation, gives us,
2sin11πcos11π=sin112π
2sin11πcos113π=sin114π−sin112π
2sin11πcos115π=sin116π−sin114π
2sin11πcos117π=sin118π−sin116π
2sin11πcos119π=sin1110π−sin118π
Replacing, these terms in the given series, gives us,
=2sin11πsin112π+(sin114π−sin112π)+(sin116π−sin114π)+(sin118π−sin116π)+(sin1110π−sin118π)
Opening the brackets and simplifying, we get,
=2sin11πsin112π+sin114π−sin112π+sin116π−sin114π+sin118π−sin116π+sin1110π−sin118π
We can see clearly that in the numerator all the terms get cancelled, except sin1110π.
So,
=2sin11πsin1110π
Now, we know, sin1110π=sin(π−11π)
Using this property, we get,
=2sin11πsin(π−11π)
Now, we know, sin(22π−θ)=sinθ.
So, using this property, we can clearly say that, sin(π−11π)=sin(22π−11π)=sin11π.
Therefore, we can write as,
=2sin11πsin11π
Now, cancelling the sin11π in the numerator and denominator, we get,
cos11π+cos113π+cos115π+cos117π+cos119π=21
Therefore, the correct option is 2.
Note: Many a times, we may get confused and panic due to the complex angles in the cosine functions and feel that the solutions would be complex, but we had to just use simple and commonly used trigonometric properties to get the answer. Sometimes, we can also make calculation mistakes in solving the equations and using the trigonometric properties properly.