Solveeit Logo

Question

Question: Evaluate: \({\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) + {\sin ^{ - 1}}\left( {\sin \...

Evaluate: cos1(cos2π3)+sin1(sin2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)
(A) 4π3\dfrac{{4\pi }} {3}
(B) π2\dfrac{\pi } {2}
(C) 3π4\dfrac{{3\pi }} {4}
(D) π\pi

Explanation

Solution

The given expressions can be evaluated by using the properties of inverse trigonometric functions.
According to property of inverse trigonometric functions, if x[0,π]x \in \left[ {0,\pi } \right]; the value of sin1(sinx){\sin ^{ - 1}}\left( {\sin x} \right) is xx.
Also, if x[π2,π2]x \in \left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right];
the value of cos1(cosx){\cos ^{ - 1}}\left( {\cos x} \right) is xx.

Complete step by step solution:
The given expression is cos1(cos2π3)+sin1(sin2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right).
In order to evaluate the above expression, we need to solve each of the terms by using the properties of inverse trigonometric functions.
It is known that if x[0,π]x \in \left[ {0,\pi } \right];
the value of sin1(sinx){\sin ^{ - 1}}\left( {\sin x} \right) is xx.
Also, if x[π2,π2]x \in \left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right];
the value of cos1(cosx){\cos ^{ - 1}}\left( {\cos x} \right)is xx.
So, sin1(sinx)=x,x[π2,π2]{\sin ^{ - 1}}\left( {\sin x} \right) = x,\forall x \in \left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right] and cos1(cosx)=x;x[0,π]{\cos ^{ - 1}}\left( {\cos x} \right) = x;\forall x \in \left[ {0,\pi } \right].
Now, simplify the term cos1(cos2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right).
In the above expression, the angle is 2π3\dfrac{{2\pi }} {3}
which belongs to the interval [π2,π2]\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right].
So, the value of the expression cos1(cos2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) is 2π3\dfrac{{2\pi }} {3} that is, cos1(cos2π3)=2π3{\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) = \dfrac{{2\pi }} {3}.
Also, simplify the term sin1(sin2π3){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right).
In the above expression, the angle is 2π3\dfrac{{2\pi }} {3} which does not belong to the interval [π2,π2]\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right].
So, rewrite the angle 2π3\dfrac{{2\pi }} {3} as,
2π3=3ππ3 =3π3π3 =ππ3  \dfrac{{2\pi }} {3} = \dfrac{{3\pi - \pi }} {3} \\\ = \dfrac{{3\pi }} {3} - \dfrac{\pi } {3} \\\ = \pi - \dfrac{\pi } {3} \\\
Substitute ππ3\pi - \dfrac{\pi } {3}
for 2π3\dfrac{{2\pi }} {3}
in the expression sin1(sin2π3){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)
sin1(sin2π3)=sin1(sin(ππ3)){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi } {3}} \right)} \right)
Also, it is known that sin(ππ3)=sinπ3\sin \left( {\pi - \dfrac{\pi } {3}} \right) = \sin \dfrac{\pi } {3}
Substitute sinπ3\sin \dfrac{\pi } {3} for sin(ππ3)\sin \left( {\pi - \dfrac{\pi } {3}} \right) in the sin1(sin2π3)=sin1(sin(ππ3)){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi } {3}} \right)} \right)
sin1(sin2π3)=sin1(sin(ππ3)) sin1(sin2π3)=sin1(sinπ3)  {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi } {3}} \right)} \right) \\\ {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi } {3}} \right) \\\
In the above expression, it is seen that the angle is π3\dfrac{\pi } {3} which belongs to the interval [π2,π2]\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right]
Rewrite the expression sin1(sinπ3){\sin ^{ - 1}}\left( {\sin \dfrac{\pi } {3}} \right) by using the property sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x
sin1(sinπ3)=π3{\sin ^{ - 1}}\left( {\sin \dfrac{\pi } {3}} \right) = \dfrac{\pi } {3}
Substitute the values 2π3\dfrac{{2\pi }} {3}
for cos1(cos2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right)
and π3\dfrac{\pi } {3}
for sin1(sinπ3){\sin ^{ - 1}}\left( {\sin \dfrac{\pi } {3}} \right)
in the expression cos1(cos2π3)+sin1(sin2π3){\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)
and simplify.
cos1(cos2π3)+sin1(sin2π3)=2π3+π3 =2π+π3 =3π3 =π  {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right) = \dfrac{{2\pi }} {3} + \dfrac{\pi } {3} \\\ = \dfrac{{2\pi + \pi }} {3} \\\ = \dfrac{{3\pi }} {3} \\\ = \pi \\\
Thus, the required value of the given expression is π\pi .
Hence, the required correct answer is (D).

Note: To evaluate the given expression it is necessary to use the properties of inverse trigonometric functions for cos1{\cos ^{ - 1}} and sin1{\sin ^{ - 1}} . We must know that the inverse trigonometric function cos1{\cos ^{ - 1}} lies in the interval [0,π]\left[ {0,\pi } \right] . Also, the inverse trigonometric function sin1{\sin ^{ - 1}} lies in the interval [π2,π2]\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right]