Question
Question: Evaluate \(C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2}\) for \(n=10\) and...
Evaluate C02−C12+C22−.....+(−1)nCn2 for n=10 and n=11?
Solution
We start solving the problem by assigning the variable for C02−C12+C22−.....+(−1)nCn2. We then use the fact that (1+x)n=nCo+nC1x+nC2x2+......+nCnxn for (1+x)10, (1−x)10 for n=10 and multiply both of them. We do this step similarly for n=11. We then compare the coefficient of x10 on both sides for n=10 and the coefficient of x11 for n=11. We then use the fact that that the general form of terms in the binomial expansion (a+b)n is nCrarbn−r, where 0≤r≤n and make necessary calculations to get the required values.
Complete step-by-step solution:
According to the problem, we need to find the value of C02−C12+C22−.....+(−1)nCn2 for n=10 and n=11.
Let us first find the value of C02−C12+C22−.....+(−1)nCn2 for n=10. Let us assume this value is ‘y’.
So, we get y= 10C02−10C12+10C22−10C32+10C42−10C52+10C62−10C72+10C82−10C92+10C102 ---(1).
We know that (1+x)n=nCo+nC1x+nC2x2+......+nCnxn.
So, we get (1−x)10=10Co+10C1(−x)+10C2(−x)2+10C3(−x)3+......+10C10(−x)10.
⇒(1−x)10=10Co−10C1x+10C2x2−10C3x3+......+10C10x10 ---(2).
Now, we know that (1+x)10=(x+1)10=10Co(x)10+10C1(x)9+10C2(x)8+10C3(x)7+......+10C10.
⇒(1+x)10=10Cox10+10C1x9+10C2x8+10C3x7+......+10C10 ---(3).
Let us multiply equations (2) and (3).
We get ⇒(1−x)10×(1+x)10=(10Co−10C1x+10C2x2−......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10).
⇒((1−x)×(1+x))10=(10Co−10C1x+10C2x2−......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10).
⇒(1−x2)10=(10Co−10C1x+10C2x2−......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10).
Now, let us compare the coefficients of x10 on both sides.
Let us find the general form of terms in (1−x2)10. We know that the general form of terms in the binomial expansion (a+b)n is nCrarbn−r, where 0≤r≤n.
So, the general forms of terms in (1−x2)10 is 10Cr(1)r(x2)10−r=10Cr(x)20−2r, 0≤r≤10.
We need to find the coefficient of x10. So, we get 20−2r=10.
⇒2r=10.
⇒r=5.
So, the coefficient of x10 in (1−x2)10 is 10C5.
So, we get 10C5=10C0×10C0+10C1×(−10C1)+10C2×10C2+10C3×(−10C3)+......+10C10×10C10.
⇒10C5=10C02−10C12+10C23−10C32+......+10C102.
From equation (1), we get y=10C5.
We know that nCr=r!(n−r)!n! and n!=n×(n−1)×(n−2)×......×2×1.
⇒y=5!5!10!.
⇒y=5×4×3×2×110×9×8×7×6.
⇒y=2×9×2×7.
⇒y=252.
So, the value of C02−C12+C22−.....+(−1)nCn2 for n=10 is 252.
Now, let us find the value of C02−C12+C22−.....+(−1)nCn2 for n=11. Let us assume this value is ‘z’.
So, we get z= 11C02−11C12+11C22−11C32+11C42−11C52+11C62−11C72+11C82−11C92+11C102−11C112 ---(4).
Now, we have (1−x)11=11Co+11C1(−x)+11C2(−x)2+11C3(−x)3+......+11C11(−x)11.
⇒(1−x)11=11Co−11C1x+11C2x2−11C3x3+......−11C11x11 ---(5).
Now, we know that (1+x)11=(x+1)11=11Co(x)11+11C1(x)10+11C2(x)9+11C3(x)8+......+11C11.
⇒(1+x)11=11Cox11+11C1x10+11C2x9+11C3x8+......+11C11 ---(6).
Let us multiply equations (5) and (6).
We get ⇒(1−x)11×(1+x)11=(11Co−11C1x+11C2x2−......−11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11).
⇒((1−x)×(1+x))11=(11Co−11C1x+11C2x2−......−11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11).
⇒(1−x2)22=(11Co−11C1x+11C2x2−......−11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11).
Now, let us compare the coefficients of x11 on both sides.
Let us find the general form of terms in (1−x2)11. We know that the general form of terms in the binomial expansion (a+b)n is nCrarbn−r, where 0≤r≤n.
So, the general forms of terms in (1−x2)11 is 11Cr(1)r(x2)11−r=11Cr(x)22−2r, 0≤r≤11.
We need to find the coefficient of x11. So, we get 22−2r=11.
⇒2r=11.
⇒r=211.
We know that ‘r’ should be integer. So, the coefficient of x11 in (1−x2)11 is 0.
So, we get 0=11C0×11C0+11C1×(−11C1)+11C2×11C2+11C3×(−11C3)+......+11C11×(−11C11).
⇒0=11C02−11C12+11C23−11C32+......−11C112.
From equation (4), we get z=0.
So, the value of C02−C12+C22−.....+(−1)nCn2 for n=11 is 0.
Note: We should know that ‘a’ should be a positive integer and ‘b’ should be a negative integer in the combination aCb, which is a very important property. We can see that the given problem contains a huge amount of calculation, so we need to make calculations carefully in every step in order to avoid confusion and mistakes. Whenever we get the problem involving the squares and multiplication of binomial coefficients we should know that there is a possibility of multiplication of two binomial expansions.