Solveeit Logo

Question

Question: Evaluate \(C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2}\) for \(n=10\) and...

Evaluate C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=10n=10 and n=11n=11?

Explanation

Solution

We start solving the problem by assigning the variable for C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2}. We then use the fact that (1+x)n=nCo+nC1x+nC2x2+......+nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{o}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{n}}{{x}^{n}} for (1+x)10{{\left( 1+x \right)}^{10}}, (1x)10{{\left( 1-x \right)}^{10}} for n=10n=10 and multiply both of them. We do this step similarly for n=11n=11. We then compare the coefficient of x10{{x}^{10}} on both sides for n=10n=10 and the coefficient of x11{{x}^{11}} for n=11n=11. We then use the fact that that the general form of terms in the binomial expansion (a+b)n{{\left( a+b \right)}^{n}} is nCrarbnr{}^{n}{{C}_{r}}{{a}^{r}}{{b}^{n-r}}, where 0rn0\le r\le n and make necessary calculations to get the required values.

Complete step-by-step solution:
According to the problem, we need to find the value of C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=10n=10 and n=11n=11.
Let us first find the value of C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=10n=10. Let us assume this value is ‘y’.
So, we get y= 10C0210C12+10C2210C32+10C4210C52+10C6210C72+10C8210C92+10C102y=~{}^{10}C_{0}^{2}-{}^{10}C_{1}^{2}+{}^{10}C_{2}^{2}-{}^{10}C_{3}^{2}+{}^{10}C_{4}^{2}-{}^{10}C_{5}^{2}+{}^{10}C_{6}^{2}-{}^{10}C_{7}^{2}+{}^{10}C_{8}^{2}-{}^{10}C_{9}^{2}+{}^{10}C_{10}^{2} ---(1).
We know that (1+x)n=nCo+nC1x+nC2x2+......+nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{o}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{n}}{{x}^{n}}.
So, we get (1x)10=10Co+10C1(x)+10C2(x)2+10C3(x)3+......+10C10(x)10{{\left( 1-x \right)}^{10}}={}^{10}{{C}_{o}}+{}^{10}{{C}_{1}}\left( -x \right)+{}^{10}{{C}_{2}}{{\left( -x \right)}^{2}}+{}^{10}{{C}_{3}}{{\left( -x \right)}^{3}}+......+{}^{10}{{C}_{10}}{{\left( -x \right)}^{10}}.
(1x)10=10Co10C1x+10C2x210C3x3+......+10C10x10\Rightarrow {{\left( 1-x \right)}^{10}}={}^{10}{{C}_{o}}-{}^{10}{{C}_{1}}x+{}^{10}{{C}_{2}}{{x}^{2}}-{}^{10}{{C}_{3}}{{x}^{3}}+......+{}^{10}{{C}_{10}}{{x}^{10}} ---(2).
Now, we know that (1+x)10=(x+1)10=10Co(x)10+10C1(x)9+10C2(x)8+10C3(x)7+......+10C10{{\left( 1+x \right)}^{10}}={{\left( x+1 \right)}^{10}}={}^{10}{{C}_{o}}{{\left( x \right)}^{10}}+{}^{10}{{C}_{1}}{{\left( x \right)}^{9}}+{}^{10}{{C}_{2}}{{\left( x \right)}^{8}}+{}^{10}{{C}_{3}}{{\left( x \right)}^{7}}+......+{}^{10}{{C}_{10}}.
(1+x)10=10Cox10+10C1x9+10C2x8+10C3x7+......+10C10\Rightarrow {{\left( 1+x \right)}^{10}}={}^{10}{{C}_{o}}{{x}^{10}}+{}^{10}{{C}_{1}}{{x}^{9}}+{}^{10}{{C}_{2}}{{x}^{8}}+{}^{10}{{C}_{3}}{{x}^{7}}+......+{}^{10}{{C}_{10}} ---(3).
Let us multiply equations (2) and (3).
We get (1x)10×(1+x)10=(10Co10C1x+10C2x2......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10)\Rightarrow {{\left( 1-x \right)}^{10}}\times {{\left( 1+x \right)}^{10}}=\left( {}^{10}{{C}_{o}}-{}^{10}{{C}_{1}}x+{}^{10}{{C}_{2}}{{x}^{2}}-......+{}^{10}{{C}_{10}}{{x}^{10}} \right)\times \left( {}^{10}{{C}_{o}}{{x}^{10}}+{}^{10}{{C}_{1}}{{x}^{9}}+{}^{10}{{C}_{2}}{{x}^{8}}+......+{}^{10}{{C}_{10}} \right).
((1x)×(1+x))10=(10Co10C1x+10C2x2......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10)\Rightarrow {{\left( \left( 1-x \right)\times \left( 1+x \right) \right)}^{10}}=\left( {}^{10}{{C}_{o}}-{}^{10}{{C}_{1}}x+{}^{10}{{C}_{2}}{{x}^{2}}-......+{}^{10}{{C}_{10}}{{x}^{10}} \right)\times \left( {}^{10}{{C}_{o}}{{x}^{10}}+{}^{10}{{C}_{1}}{{x}^{9}}+{}^{10}{{C}_{2}}{{x}^{8}}+......+{}^{10}{{C}_{10}} \right).
(1x2)10=(10Co10C1x+10C2x2......+10C10x10)×(10Cox10+10C1x9+10C2x8+......+10C10)\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{10}}=\left( {}^{10}{{C}_{o}}-{}^{10}{{C}_{1}}x+{}^{10}{{C}_{2}}{{x}^{2}}-......+{}^{10}{{C}_{10}}{{x}^{10}} \right)\times \left( {}^{10}{{C}_{o}}{{x}^{10}}+{}^{10}{{C}_{1}}{{x}^{9}}+{}^{10}{{C}_{2}}{{x}^{8}}+......+{}^{10}{{C}_{10}} \right).
Now, let us compare the coefficients of x10{{x}^{10}} on both sides.
Let us find the general form of terms in (1x2)10{{\left( 1-{{x}^{2}} \right)}^{10}}. We know that the general form of terms in the binomial expansion (a+b)n{{\left( a+b \right)}^{n}} is nCrarbnr{}^{n}{{C}_{r}}{{a}^{r}}{{b}^{n-r}}, where 0rn0\le r\le n.
So, the general forms of terms in (1x2)10{{\left( 1-{{x}^{2}} \right)}^{10}} is 10Cr(1)r(x2)10r=10Cr(x)202r{}^{10}{{C}_{r}}{{\left( 1 \right)}^{r}}{{\left( {{x}^{2}} \right)}^{10-r}}={}^{10}{{C}_{r}}{{\left( x \right)}^{20-2r}}, 0r100\le r\le 10.
We need to find the coefficient of x10{{x}^{10}}. So, we get 202r=1020-2r=10.
2r=10\Rightarrow 2r=10.
r=5\Rightarrow r=5.
So, the coefficient of x10{{x}^{10}} in (1x2)10{{\left( 1-{{x}^{2}} \right)}^{10}} is 10C5{}^{10}{{C}_{5}}.
So, we get 10C5=10C0×10C0+10C1×(10C1)+10C2×10C2+10C3×(10C3)+......+10C10×10C10{}^{10}{{C}_{5}}={}^{10}{{C}_{0}}\times {}^{10}{{C}_{0}}+{}^{10}{{C}_{1}}\times \left( -{}^{10}{{C}_{1}} \right)+{}^{10}{{C}_{2}}\times {}^{10}{{C}_{2}}+{}^{10}{{C}_{3}}\times \left( -{}^{10}{{C}_{3}} \right)+......+{}^{10}{{C}_{10}}\times {}^{10}{{C}_{10}}.
10C5=10C0210C12+10C2310C32+......+10C102\Rightarrow {}^{10}{{C}_{5}}={}^{10}C_{0}^{2}-{}^{10}C_{1}^{2}+{}^{10}C_{2}^{3}-{}^{10}C_{3}^{2}+......+{}^{10}C_{10}^{2}.
From equation (1), we get y=10C5y={}^{10}{{C}_{5}}.
We know that nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} and n!=n×(n1)×(n2)×......×2×1n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1.
y=10!5!5!\Rightarrow y=\dfrac{10!}{5!5!}.
y=10×9×8×7×65×4×3×2×1\Rightarrow y=\dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2\times 1}.
y=2×9×2×7\Rightarrow y=2\times 9\times 2\times 7.
y=252\Rightarrow y=252.
So, the value of C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=10n=10 is 252.
Now, let us find the value of C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=11n=11. Let us assume this value is ‘z’.
So, we get z= 11C0211C12+11C2211C32+11C4211C52+11C6211C72+11C8211C92+11C10211C112z=~{}^{11}C_{0}^{2}-{}^{11}C_{1}^{2}+{}^{11}C_{2}^{2}-{}^{11}C_{3}^{2}+{}^{11}C_{4}^{2}-{}^{11}C_{5}^{2}+{}^{11}C_{6}^{2}-{}^{11}C_{7}^{2}+{}^{11}C_{8}^{2}-{}^{11}C_{9}^{2}+{}^{11}C_{10}^{2}-{}^{11}C_{11}^{2} ---(4).
Now, we have (1x)11=11Co+11C1(x)+11C2(x)2+11C3(x)3+......+11C11(x)11{{\left( 1-x \right)}^{11}}={}^{11}{{C}_{o}}+{}^{11}{{C}_{1}}\left( -x \right)+{}^{11}{{C}_{2}}{{\left( -x \right)}^{2}}+{}^{11}{{C}_{3}}{{\left( -x \right)}^{3}}+......+{}^{11}{{C}_{11}}{{\left( -x \right)}^{11}}.
(1x)11=11Co11C1x+11C2x211C3x3+......11C11x11\Rightarrow {{\left( 1-x \right)}^{11}}={}^{11}{{C}_{o}}-{}^{11}{{C}_{1}}x+{}^{11}{{C}_{2}}{{x}^{2}}-{}^{11}{{C}_{3}}{{x}^{3}}+......-{}^{11}{{C}_{11}}{{x}^{11}} ---(5).
Now, we know that (1+x)11=(x+1)11=11Co(x)11+11C1(x)10+11C2(x)9+11C3(x)8+......+11C11{{\left( 1+x \right)}^{11}}={{\left( x+1 \right)}^{11}}={}^{11}{{C}_{o}}{{\left( x \right)}^{11}}+{}^{11}{{C}_{1}}{{\left( x \right)}^{10}}+{}^{11}{{C}_{2}}{{\left( x \right)}^{9}}+{}^{11}{{C}_{3}}{{\left( x \right)}^{8}}+......+{}^{11}{{C}_{11}}.
(1+x)11=11Cox11+11C1x10+11C2x9+11C3x8+......+11C11\Rightarrow {{\left( 1+x \right)}^{11}}={}^{11}{{C}_{o}}{{x}^{11}}+{}^{11}{{C}_{1}}{{x}^{10}}+{}^{11}{{C}_{2}}{{x}^{9}}+{}^{11}{{C}_{3}}{{x}^{8}}+......+{}^{11}{{C}_{11}} ---(6).
Let us multiply equations (5) and (6).
We get (1x)11×(1+x)11=(11Co11C1x+11C2x2......11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11)\Rightarrow {{\left( 1-x \right)}^{11}}\times {{\left( 1+x \right)}^{11}}=\left( {}^{11}{{C}_{o}}-{}^{11}{{C}_{1}}x+{}^{11}{{C}_{2}}{{x}^{2}}-......-{}^{11}{{C}_{11}}{{x}^{11}} \right)\times \left( {}^{11}{{C}_{o}}{{x}^{11}}+{}^{11}{{C}_{1}}{{x}^{10}}+{}^{11}{{C}_{2}}{{x}^{9}}+......+{}^{11}{{C}_{11}} \right).
((1x)×(1+x))11=(11Co11C1x+11C2x2......11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11)\Rightarrow {{\left( \left( 1-x \right)\times \left( 1+x \right) \right)}^{11}}=\left( {}^{11}{{C}_{o}}-{}^{11}{{C}_{1}}x+{}^{11}{{C}_{2}}{{x}^{2}}-......-{}^{11}{{C}_{11}}{{x}^{11}} \right)\times \left( {}^{11}{{C}_{o}}{{x}^{11}}+{}^{11}{{C}_{1}}{{x}^{10}}+{}^{11}{{C}_{2}}{{x}^{9}}+......+{}^{11}{{C}_{11}} \right).
(1x2)22=(11Co11C1x+11C2x2......11C11x11)×(11Cox11+11C1x10+11C2x9+......+11C11)\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{22}}=\left( {}^{11}{{C}_{o}}-{}^{11}{{C}_{1}}x+{}^{11}{{C}_{2}}{{x}^{2}}-......-{}^{11}{{C}_{11}}{{x}^{11}} \right)\times \left( {}^{11}{{C}_{o}}{{x}^{11}}+{}^{11}{{C}_{1}}{{x}^{10}}+{}^{11}{{C}_{2}}{{x}^{9}}+......+{}^{11}{{C}_{11}} \right).
Now, let us compare the coefficients of x11{{x}^{11}} on both sides.
Let us find the general form of terms in (1x2)11{{\left( 1-{{x}^{2}} \right)}^{11}}. We know that the general form of terms in the binomial expansion (a+b)n{{\left( a+b \right)}^{n}} is nCrarbnr{}^{n}{{C}_{r}}{{a}^{r}}{{b}^{n-r}}, where 0rn0\le r\le n.
So, the general forms of terms in (1x2)11{{\left( 1-{{x}^{2}} \right)}^{11}} is 11Cr(1)r(x2)11r=11Cr(x)222r{}^{11}{{C}_{r}}{{\left( 1 \right)}^{r}}{{\left( {{x}^{2}} \right)}^{11-r}}={}^{11}{{C}_{r}}{{\left( x \right)}^{22-2r}}, 0r110\le r\le 11.
We need to find the coefficient of x11{{x}^{11}}. So, we get 222r=1122-2r=11.
2r=11\Rightarrow 2r=11.
r=112\Rightarrow r=\dfrac{11}{2}.
We know that ‘r’ should be integer. So, the coefficient of x11{{x}^{11}} in (1x2)11{{\left( 1-{{x}^{2}} \right)}^{11}} is 0.
So, we get 0=11C0×11C0+11C1×(11C1)+11C2×11C2+11C3×(11C3)+......+11C11×(11C11)0={}^{11}{{C}_{0}}\times {}^{11}{{C}_{0}}+{}^{11}{{C}_{1}}\times \left( -{}^{11}{{C}_{1}} \right)+{}^{11}{{C}_{2}}\times {}^{11}{{C}_{2}}+{}^{11}{{C}_{3}}\times \left( -{}^{11}{{C}_{3}} \right)+......+{}^{11}{{C}_{11}}\times \left( -{}^{11}{{C}_{11}} \right).
0=11C0211C12+11C2311C32+......11C112\Rightarrow 0={}^{11}C_{0}^{2}-{}^{11}C_{1}^{2}+{}^{11}C_{2}^{3}-{}^{11}C_{3}^{2}+......-{}^{11}C_{11}^{2}.
From equation (4), we get z=0z=0.
So, the value of C02C12+C22.....+(1)nCn2C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-.....+{{\left( -1 \right)}^{n}}C_{n}^{2} for n=11n=11 is 0.

Note: We should know that ‘a’ should be a positive integer and ‘b’ should be a negative integer in the combination aCb{}^{a}{{C}_{b}}, which is a very important property. We can see that the given problem contains a huge amount of calculation, so we need to make calculations carefully in every step in order to avoid confusion and mistakes. Whenever we get the problem involving the squares and multiplication of binomial coefficients we should know that there is a possibility of multiplication of two binomial expansions.