Solveeit Logo

Question

Mathematics Question on Determinants

Evaluatexyx+y yx+yx x+yxy\begin{vmatrix} x &y &x+y \\\ y&x+y &x \\\ x+y&x &y \end{vmatrix}

Answer

Δ=xyx+y yx+yx x+yxy\Delta = \begin{vmatrix} x &y &x+y \\\ y&x+y &x \\\ x+y&x &y \end{vmatrix}
Applying R1\rightarrowR1+R2+R3, we have
Δ=2(x+y)yx+y 2(x+y)x+yx 2(x+y)xy\begin{vmatrix} 2(x+y) &y &x+y \\\ 2(x+y)&x+y &x \\\ 2(x+y)&x &y \end{vmatrix}
= 2(x+y)1yx+y 1x+yx 1xy\begin{vmatrix} 1&y &x+y \\\ 1&x+y &x \\\ 1&x &y \end{vmatrix}
Applying C2\rightarrowC2-C1 and C3\rightarrowC3-C1, we have
Δ=2(x+y)1yx+y 0xx 0xyx\begin{vmatrix} 1 &y &x+y \\\ 0&x &x \\\ 0&x-y & -x \end{vmatrix}

Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)