Question
Question: Evaluate \(\arctan \left( {\dfrac{1}{2}} \right) + \arctan \left( {\dfrac{1}{3}} \right).\)...
Evaluate arctan(21)+arctan(31).
Solution
We know the identity: tan(θ1+θ2)=1−tanθ1tanθ2tanθ1+tanθ2
So by using the above formula we can solve this question.
Complete step by step solution:
Given
arctan(21)+arctan(31).........................(i)
So the in order to solve the above mentioned question we can use identity:
tan(θ1+θ2)=1−tanθ1tanθ2tanθ1+tanθ2...............(ii)
But here all the terms are expressed in tan but in our question it’s expressed in arc tan, such that we have to express the given question in tan and then apply the identity.
Also we know that the tan and arc tan functions are inverse in nature i.e. they are inverse functions:
So converting arc tan to tan, we can write:
$
\arctan \left( {\dfrac{1}{2}} \right) \\
\Rightarrow \tan \left( {{\theta _1}} \right) = \dfrac{1}{2}..............\left( {iii} \right) \\
\arctan \left( {\dfrac{1}{3}} \right) \\
\Rightarrow \tan \left( {{\theta _2}} \right) = \dfrac{1}{3}..............\left( {iv} \right) \\
Onobserving(iii)and(iv)weknowthatwehaveexpressedthequestionintermsoftansuchthatwecanapplydirectlytheidentitytofindthesumoftangent:
\Rightarrow \tan \left( {{\theta _1} + {\theta _2}} \right) = \dfrac{{\tan {\theta _1} + \tan {\theta
_2}}}{{1 - \tan {\theta _1}\tan {\theta _2}}} \\
\Rightarrow \tan \left( {\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{3}} \right)} \right) =
\dfrac{{\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{2}} \right)
\times \left( {\dfrac{1}{3}} \right)}} \\
\\
Sincefrom(iii)and(iv)wecanfindthevaluesof\tan \left( {{\theta _1}} \right),{\text{and}},\tan \left( {{\theta _2}} \right)wedirectlysubstitutethosevaluesintheequation.
\Rightarrow \tan \left( {\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{3}} \right)} \right) =
\dfrac{{\left( {\dfrac{5}{6}} \right)}}{{1 - \left( {\dfrac{1}{6}} \right)}} = \dfrac{{\left( {\dfrac{5}{6}}
\right)}}{{\left( {\dfrac{5}{6}} \right)}} \\
\Rightarrow \tan \left( {\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{3}} \right)} \right) =
1............\left( v \right) \\
$
Now knowing that tan and arc tan functions are inverse in nature i.e. they are inverse functions we can convert (v) back into the terms of arc tan.
Such that:
θ1+θ2=arctan(1)whereθ1=arctan21andθ2=arctan31
Also we know that the value of each individual termθ1andθ2 is between 0and4πthere sum also then should be between
0and2πi.e. in the Quadrant I.
So that we can write:
θ1+θ2=arctan(1)=4π..........................(vi)
Since in the Quadrant I onlytan(4π)=1.
Therefore from (vi) we can write our final answer:
arctan(21)+arctan(31)=4π
Note: Some properties useful for solving trigonometric questions:
Quadrant I:0−2π All values are positive.
Quadrant II:2π−π Only Sine and Cosec values are positive.
Quadrant III:π−23π Only Tan and Cot values are positive.
Quadrant IV:23π−2π Only Cos and Sec values are positive.
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side.