Solveeit Logo

Question

Question: Evaluate and write the value of the expression \(\left( \widehat{k}\times \widehat{i} \right).\wi...

Evaluate and write the value of the expression
(k^×i^).j^+i^.k^\left( \widehat{k}\times \widehat{i} \right).\widehat{j}+\widehat{i}.\widehat{k}

Explanation

Solution

Hint: We should use the dot product and cross product properties of the unit vectors((i^,j^,k^)\left( \widehat{i},\widehat{j},\widehat{k} \right) to evaluate the expression and obtain the corresponding value.

Complete step-by-step answer:
Every vector can be written in terms of the unit reference vectors i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} . For example, for any two vectors A and B \overrightarrow{A}\text{ and }\overrightarrow{B}\text{ } , we can write them as
A=Aii^+Ajj^+Akk^ and B=Bii^+Bjj^+Bkk^(1.1) \begin{aligned} & \overrightarrow{A}={{A}_{i}}\widehat{i}+{{A}_{j}}\widehat{j}+{{A}_{k}}\widehat{k}\text{ and} \\\ & \overrightarrow{B}={{B}_{i}}\widehat{i}+{{B}_{j}}\widehat{j}+{{B}_{k}}\widehat{k}\ldots \ldots \ldots (1.1) \\\ \end{aligned}
Where Ai,Aj,Ak{{A}_{i}},{{A}_{j}},{{A}_{k}} are the components of A\overrightarrow{A} along the i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} directions and Bi,Bj and Bk{{B}_{i}},{{B}_{j}}\text{ and }{{B}_{k}} are the components of B\overrightarrow{B} along the i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} directions.
The dot product of A\overrightarrow{A} and B\overrightarrow{B} is given by
A.B=AiBi+AjBj+AkBk(1.2)\overrightarrow{A}.\overrightarrow{B}={{A}_{i}}{{B}_{i}}+{{A}_{j}}{{B}_{j}}+{{A}_{k}}{{B}_{k}}\ldots \ldots \ldots (1.2)
And their cross product is given by
A×B=det(i^j^k^ AiAjAk BiBjBk )(1.3)\overrightarrow{A}\times \overrightarrow{B}=\text{det}\left( \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\\ {{A}_{i}} & {{A}_{j}} & {{A}_{k}} \\\ {{B}_{i}} & {{B}_{j}} & {{B}_{k}} \\\ \end{matrix} \right)\ldots \ldots \ldots (1.3)
Where det means that we have to take the determinant of the matrix. We note that i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} can be written as:
i^=1i^+0j^+0k^ j^=0i^+1j^+0k^ k^=0i^+0j^+1k^  \begin{aligned} & \widehat{i}=1\widehat{i}+0\widehat{j}+0\widehat{k} \\\ & \widehat{j}=0\widehat{i}+1\widehat{j}+0\widehat{k} \\\ & \widehat{k}=0\widehat{i}+0\widehat{j}+1\widehat{k}\text{ } \\\ \end{aligned}
Thus, we can use equations (1.2) and (1.3) to obtain:
k^×i^=det(i^j^k^ 001 100 )=(00)i^+(10)j^+(00)k^=j^(1.4)\widehat{k}\times \widehat{i}=\text{det}\left( \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\\ 0 & 0 & 1 \\\ 1 & 0 & 0 \\\ \end{matrix} \right)=\left( 0-0 \right)\widehat{i}+\left( 1-0 \right)\widehat{j}+\left( 0-0 \right)\widehat{k}=\widehat{j}\ldots \ldots \ldots (1.4)
And j^.j^=0×0+1×1+0×0=1\widehat{j}.\widehat{j}=0\times 0+1\times 1+0\times 0=1
So, (k^×i^).j^=j^.j^=1...........(1.5)\left( \widehat{k}\times \widehat{i} \right).\widehat{j}=\widehat{j}.\widehat{j}=1...........(1.5)
And i^.k^=1×0+0×0+0×1=0..........(1.6)\widehat{i}.\widehat{k}=1\times 0+0\times 0+0\times 1=0..........(1.6)
Thus, from equations (1.5) and (1.6), we obtain
(k^×i^).j^+i^.k^\left( \widehat{k}\times \widehat{i} \right).\widehat{j}+\widehat{i}.\widehat{k} = 1 + 0 = 1

Note: There is an easy way to remember the dot and cross products of the unit vectors i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} . That is, the dot product of each of the unit reference vectors (i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k}) with itself is 1 and with any unit reference vector is zero. For the cross product, if we write i^,j^ and k^\widehat{i},\widehat{j}\text{ and }\widehat{k} in this order (i^\widehat{i} followed by j^\widehat{j} followed by k^\widehat{k}), then the cross product of the two unit reference vectors produces the other unit reference vector with a positive sign if the product is taken in forward direction (i^×j^ , j^×k^ , k^×i^ \widehat{i}\times \widehat{j}\text{ , }\widehat{j}\times \widehat{k}\text{ , }\widehat{k}\times \widehat{i}\text{ }) and has a negative sign if the product is taken in the backward direction (j^×i^ , k^×j^ , i^×k^ \widehat{j}\times \widehat{i}\text{ , }\widehat{k}\times \widehat{j}\text{ , }\widehat{i}\times \widehat{k}\text{ }).