Solveeit Logo

Question

Question: Evaluate \( 4\cos {20^ \circ } - \sqrt 3 cot{20^ \circ } \)...

Evaluate 4cos203cot204\cos {20^ \circ } - \sqrt 3 cot{20^ \circ }

Explanation

Solution

Hint : Cot can also be written as the ratio of cosine to sine. Replace the cot with the ratio of cosine and sine. Use the formulas of sinAcosB\sin A\cos B and cosAsinB\cos A\sin B wherever it is necessary. And also remember that sine of negative angle is equal to negative sine angle.
Formulas used:
1. 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)
2. 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)
3. sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta
4. sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)

Complete step-by-step answer :
We are given to evaluate the expression 4cos203cot204\cos {20^ \circ } - \sqrt 3 cot{20^ \circ }
We have cot function in the given expression; express it in terms of cosine and sine as cos20sin20\dfrac{{\cos {{20}^ \circ }}}{{\sin {{20}^ \circ }}}
Therefore, the expression becomes 4cos203(cos20sin20)4\cos {20^ \circ } - \sqrt 3 \left( {\dfrac{{\cos {{20}^ \circ }}}{{\sin {{20}^ \circ }}}} \right)
We are next taking LCM and multiplying it to cosine
4cos20sin203cos20sin20\Rightarrow \dfrac{{4\cos {{20}^ \circ }\sin {{20}^ \circ } - \sqrt 3 \cos {{20}^ \circ }}}{{\sin {{20}^ \circ }}}
Taking sin20\sin {20^ \circ } out, we get
1sin20(4cos20sin203cos20)\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left( {4\cos {{20}^ \circ }\sin {{20}^ \circ } - \sqrt 3 \cos {{20}^ \circ }} \right)
1sin20[2(2cos20sin20)3cos20]\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {2\left( {2\cos {{20}^ \circ }\sin {{20}^ \circ }} \right) - \sqrt 3 \cos {{20}^ \circ }} \right]
As we can see the first term inside the bracket is of the form 2cosAsinB2\cos A\sin B which is equal to sin(A+B)sin(AB)\sin \left( {A + B} \right) - \sin \left( {A - B} \right) , where A and B are equal to 20{20^ \circ }
Therefore, 2cos20sin20=sin(20+20)sin(2020)=sin400=sin402\cos {20^ \circ }\sin {20^ \circ } = \sin \left( {{{20}^ \circ } + {{20}^ \circ }} \right) - \sin \left( {{{20}^ \circ } - {{20}^ \circ }} \right) = \sin {40^ \circ } - 0 = \sin {40^ \circ }
On substituting the obtained value of 2cos20sin202\cos {20^ \circ }\sin {20^ \circ } , we get
1sin20[2sin403cos20]\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {2\sin {{40}^ \circ } - \sqrt 3 \cos {{20}^ \circ }} \right]
Taking 2 out common, we get
2sin20[sin4032cos20]\Rightarrow \dfrac{2}{{\sin {{20}^ \circ }}}\left[ {\sin {{40}^ \circ } - \dfrac{{\sqrt 3 }}{2}\cos {{20}^ \circ }} \right]
32\dfrac{{\sqrt 3 }}{2} can also be written as sin60\sin {60^ \circ }
Therefore, the expression becomes 2sin20[sin40sin60cos20]\Rightarrow \dfrac{2}{{\sin {{20}^ \circ }}}\left[ {\sin {{40}^ \circ } - \sin {{60}^ \circ }\cos {{20}^ \circ }} \right]
Now we are sending 2 back inside
1sin20[2sin402sin60cos20]\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {2\sin {{40}^ \circ } - 2\sin {{60}^ \circ }\cos {{20}^ \circ }} \right]
As we can see the second term inside the bracket is in the form 2sinAcosB2\sin A\cos B which is equal to sin(A+B)+sin(AB)\sin \left( {A + B} \right) + \sin \left( {A - B} \right) , where A is 60{60^ \circ } and B is 20{20^ \circ }
Therefore, 2sin60cos20=sin(60+20)+sin(6020)=sin80+sin402\sin {60^ \circ }\cos {20^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right) + \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right) = \sin {80^ \circ } + \sin {40^ \circ }
On substituting the obtained value of 2sin60cos202\sin {60^ \circ }\cos {20^ \circ } , we get
1sin20[2sin40(sin80+sin40)]\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {2\sin {{40}^ \circ } - \left( {\sin {{80}^ \circ } + \sin {{40}^ \circ }} \right)} \right]
1sin20[2sin40sin80sin40]=1sin20[sin40sin80]\Rightarrow \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {2\sin {{40}^ \circ } - \sin {{80}^ \circ } - \sin {{40}^ \circ }} \right] = \dfrac{1}{{\sin {{20}^ \circ }}}\left[ {\sin {{40}^ \circ } - \sin {{80}^ \circ }} \right]
The above expression in the bracket is in the form sinAsinB\sin A - \sin B which is equal to 2cos(A+B2)sin(AB2)2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) , where A is 40{40^ \circ } and B is 80{80^ \circ }
Therefore, sin40sin80=2cos(40+802)sin(40802)=2cos60sin(20)\sin {40^ \circ } - \sin {80^ \circ } = 2\cos \left( {\dfrac{{{{40}^ \circ } + {{80}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{40}^ \circ } - {{80}^ \circ }}}{2}} \right) = 2\cos {60^ \circ }\sin \left( { - {{20}^ \circ }} \right) .
We know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta , this means sin(20)=sin20\sin \left( { - {{20}^ \circ }} \right) = - \sin {20^ \circ }
Therefore, sin40sin80=2cos60sin20\sin {40^ \circ } - \sin {80^ \circ } = - 2\cos {60^ \circ }\sin {20^ \circ }
The expression becomes
1sin20(2cos60sin20)=sin20sin20(2cos60)=2×cos60\dfrac{1}{{\sin {{20}^ \circ }}}\left( { - 2\cos {{60}^ \circ }\sin {{20}^ \circ }} \right) = \dfrac{{ - \sin {{20}^ \circ }}}{{\sin {{20}^ \circ }}}\left( {2\cos {{60}^ \circ }} \right) = - 2 \times \cos {60^ \circ }
The value of cos60=12\cos {60^ \circ } = \dfrac{1}{2}
Therefore, 2×cos60=2×12=1- 2 \times \cos {60^ \circ } = - 2 \times \dfrac{1}{2} = - 1
The value of 4cos203cot204\cos {20^ \circ } - \sqrt 3 cot{20^ \circ } is -1.
So, the correct answer is “-1”.

Note : Cot is the inverse of tan, tan is the ratio of sine and cosine. Do not confuse that cot is the ratio of sine and cosine; rather it is the ratio of cosine and sine. For these types of questions, one needs to know all the formulas involving sine and cosine. Be careful with the signs of the terms while writing the formulas.