Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Evaluate(3+2)6(32)6. ( √3 +√2) ^6 - ( √3 -√2) ^6.

Answer

Firstly, the expression (a+ b)6 - (a - b)6 is simplified by using Binomial Theorem.
This can be done as
(a+b)6=C06a6+C161a5b+C26a4b2+C36a3b3+C46a2b4+C56a1b5+C66b6(a+b)^6 = C_0^6a^6 + C_1^61a^5b + C_2^6a^4b^2 + C_3^6a^3b^3 + C_4^6a^2b^4 + C_5^6a^1b^5 + C_6^6b^6
=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6= a^6 + 6a^5b +15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6
(ab)6=C06a6C16a5b+C26a4b2C36a3b3+C46a2b4C56a1b5+C66b6(a-b)^6 = C_0^6a^6 - C_1^6a^5b + C_2^6a^4b^2 - C_3^6a^3b^3 + C_4^6a^2b^4 - C_5^6a^1b^5 + C_6^6b^6
=a66a5b+15a4b220a3b3+15a2b46ab5+b6= a^6 - 6a^5b+15a^4b^2 - 20a^3b^3 +15a^2b^4- 6ab^5 + b^6
(a+b)6(ab)6=2[6a5b+20a3b3+6ab5]∴ (a + b)^6 - (a - b)^6 = 2[ 6a^5b+20a^3b^3 +6ab^5]

Putting a = √3 and b = √2, we obtain

(3+2)6(32)6=2[6(3)5(2)+20(3)3(2)3+6(3)(2)5](√3+ √2)^6 - (√3 −√2)^6 = 2[6(√3)^5(√2) +20 (√3)^3 (√2)3 + 6(√3)(√2)^5]
=2[546+1206+246]=2[54√6+120√6+24√6]
=2×1986=2×198√6
=3966=396√6