Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Evaluate(√3+√2)6−(√3−√2)6.
Answer
Firstly, the expression (a+ b)6 - (a - b)6 is simplified by using Binomial Theorem.
This can be done as
(a+b)6=C06a6+C161a5b+C26a4b2+C36a3b3+C46a2b4+C56a1b5+C66b6
=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6
(a−b)6=C06a6−C16a5b+C26a4b2−C36a3b3+C46a2b4−C56a1b5+C66b6
=a6−6a5b+15a4b2−20a3b3+15a2b4−6ab5+b6
∴(a+b)6−(a−b)6=2[6a5b+20a3b3+6ab5]
Putting a = √3 and b = √2, we obtain
(√3+√2)6−(√3−√2)6=2[6(√3)5(√2)+20(√3)3(√2)3+6(√3)(√2)5]
=2[54√6+120√6+24√6]
=2×198√6
=396√6