Solveeit Logo

Question

Question: Evaluate; \(2\log 3-\dfrac{1}{2}\log 16+\log 12\)....

Evaluate; 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12.

Explanation

Solution

Hint: Here, first convert 2log32\log 3 into log32\log {{3}^{2}} and2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12 into log4\log 4 by the identity logab=bloga\log {{a}^{b}}=b\log a and then write all the values in 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12. After the substitution we also have to apply the identities:
loga+logb=logab logalogb=logab \begin{aligned} & \log a+\log b=\log ab \\\ & \log a-\log b=\log \dfrac{a}{b} \\\ \end{aligned}

Complete step-by-step answer:
Here, we have to find the value of 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12.
We have, 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12 …. (1)
Now, first consider 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12.
We know by the logarithmic identity that:
logab=bloga\log {{a}^{b}}=b\log a
By applying this identity we will get:
2log3=log322\log 3=\log {{3}^{2}}
Now, by taking the square of 3 which is 9 we will get:
2log3=log92\log 3=\log 9 …… (2)
Now, consider the term 2log312log16+log122\log 3-\dfrac{1}{2}\log 16+\log 12.
Here, also we have to apply the identity:
logab=bloga\log {{a}^{b}}=b\log a
Hence, by applying this we will get:
12log16=log1612\dfrac{1}{2}\log 16=\log {{16}^{\dfrac{1}{2}}}
We know that 1612{{16}^{\dfrac{1}{2}}} is the square root of 16 which is 4, thus we obtain:
12log16=log16\dfrac{1}{2}\log 16=\log \sqrt{16}
12log16=log4\dfrac{1}{2}\log 16=\log 4 ……(3)
Now, by substituting equation (2) and equation (3) in equation (1) we obtain:
2log312log16+log12=log9log4+log122\log 3-\dfrac{1}{2}\log 16+\log 12=\log 9-\log 4+\log 12
Now, by rearranging the terms we will get:
2log312log16+log12=log9+log12log42\log 3-\dfrac{1}{2}\log 16+\log 12=\log 9+\log 12-\log 4
By the logarithmic identity we can write:
loga+logb=logab\log a+\log b=\log ab
By applying the above identity we get:
2log312log16+log12=log(9×12)log4 2log312log16+log12=log108log4 \begin{aligned} & 2\log 3-\dfrac{1}{2}\log 16+\log 12=\log (9\times 12)-\log 4 \\\ & 2\log 3-\dfrac{1}{2}\log 16+\log 12=\log 108-\log 4 \\\ \end{aligned}
Now, we also have another identity,
logalogb=logab\log a-\log b=\log \dfrac{a}{b}
Next, by applying this identity we get:
2log312log16+log12=log10842\log 3-\dfrac{1}{2}\log 16+\log 12=\log \dfrac{108}{4}
Now, by cancelling 108 by 4 we get 27. Hence our equation becomes:
2log312log16+log12=log272\log 3-\dfrac{1}{2}\log 16+\log 12=\log 27

Note: Here, you can also do this by converting log12\log 12 into log(4×3)\log (4\times 3). After that, apply the identity loga+logb=logab\log a+\log b=\log ab, you will get it as log4+log3\log 4+\log 3. In the next step, cancel log4\log 4 with log4-\log 4. At last you will get it as 2log3+log3=3log32\log 3+\log 3=3\log 3. After that by applying the identity you will getlog33=log27\log {{3}^{3}}=\log 27.