Solveeit Logo

Question

Mathematics Question on Laws of Exponents

Evaluate

  1. (81×53)24\frac{ (8^{−1}× 5^3)}{2^{−4}}
  2. (51×21)×61(5^{−1}× 2^{−1})×6^{−1}
Answer

(i) (81×53)24\frac{(8^{−1} × 5^3) }{ 2^{−4}}
Since, am=1am,am÷an=amna^{−m} = \frac{1}{a^m},a^m÷a^n = a^{m−n}
(81×53)24\frac{(8^{−1} × 5^3) }{ 2^{−4}}

=(24×53)81= \frac{(2^4 × 5^3)}{8^1} [Since am=1ama^{−m} = \frac{1}{a^m}]

=(24×53)23= \frac{(2^4 × 5^3)}{2^3}
=243×53= 2^{4 − 3} × 5^3 [am ÷ an = am − n]
= 2 × 125
= 250


(ii) (51×21)×61(5^{−1}× 2^{−1}) × 6^{−1}
Since,am×bm=(ab)m,am=1am a^m × b^m = (ab)^m, a^{-m} = \frac{1}{a^m}
(51×21)×61(5^{−1} × 2^{−1}) × 6^{−1}
=101×61=10^{−1}× 6^{−1}
=(10×6)1= (10 × 6)^{−1} [am×bm=(ab)m] [∵a^m × b^m = (ab)^m]
=(60)1=160= (60)^{−1} = \frac{1}{60} [am=1am][∵ a^{-m} = \frac{1}{a^m}]