Solveeit Logo

Question

Mathematics Question on Laws of Exponents

Evaluate

  1. {(13)1(14)1(\frac{1}{3})^{−1} − (\frac{1}{4})^{−1}}−1
  2. (58)7×(85)4(\frac{5}{8})^{−7}× (\frac{8}{5})^{−4}
Answer

(i) {(13)1(14)1(\frac{1}{3})^{−1} − (\frac{1}{4})^{−1}}−1

(ab)m=(ba)m(\frac{a}{b})^{−m} = (\frac{b}{a})^m

{(13)1(14)1(\frac{1}{3})^{−1} − (\frac{1}{4})^{−1}}−1
=(3141)1= (3^1 − 4^1)−1
=(34)1= (3 − 4)^{−1}
=(1)1= (−1)^{−1}
=(11)1=1= (\frac{−1}{1})^1= −1


(ii) (58)7×(85)4(\frac{5}{8})^{−7}× (\frac{8}{5})^{−4}

We know that, (ab)m=(ba)m(\frac{a}{b})^{−m} = (\frac{b}{a})^m

(58)7×(85)4(\frac{5}{8})^{−7}× (\frac{8}{5})^{−4}

=(85)7×(85)4= (\frac{8}{5})^7 × (\frac{8}{5})^{−4}

=(85)3= (\frac{8}{5})^3 [Since, aman=amn\frac{a^m}{a^n} = a^{m - n}]

=512125= \frac{512}{125}