Solveeit Logo

Question

Mathematics Question on integral

Evaluate 01e23xdx∫^1_0e^{2-3x}dx as a limit of a sum.

Answer

The correct answer is:=13(e21e)=\frac{1}{3}(e^2-\frac{1}{e})
Let I=01e23xdxI=∫^1_0e^{2-3x}dx
It is known that,
abƒ(x)dx=(ba)limn1n[ƒ(a)+ƒ(a+h)+...+ƒ(a+(n1)h)]∫^b_aƒ(x)dx=(b-a)\underset{n→∞}{lim}\frac{1}{n}[ƒ(a)+ƒ(a+h)+...+ƒ(a+(n-1)h)]
Where,h=banh=\frac{b-a}{n}
Here,a=0,b=1a=0,b=1,and ƒ(x)=e23xƒ(x)=e^{2-3x}
h=10n=1n⇒h=\frac{1-0}{n}=\frac{1}{n}
01e23xdx=(10)limn[ƒ(0)+ƒ(0+h)+...+ƒ(0+(n1)h)]∴∫^1_0e^{2-3x}dx=(1-0)\underset{n→∞}{lim}[ƒ(0)+ƒ(0+h)+...+ƒ(0+(n-1)h)]
=limn[e2+e23h+...e23(n1)h]=\underset{n→∞}{lim}[e^2+e^{2-3h}+...e^{2-3(n-1)h}]
=limn1n[e2[1+e3h+e6h+e9h+...e3(n1)h]]=\underset{n→∞}{lim}\frac{1}{n}[e^2[1+e^{-3h}+e^{-6h}+e^{-9h}+...e^{-3(n-1)h}]]
=limn1n[e2[1(e3h)n1(e3h)]]=\underset{n→∞}{lim}\frac{1}{n}[\frac{e^2[1-(e^{-3h})^n}{1-(e^{-3h})}]]
=limn1n[e2(1e3)(1e3n)]=\underset{n→∞}{lim}\frac{1}{n}[e^2\frac{(1-e^{-3})}{(1-e^{\frac{-3}{n}})}]
=e2(e31)limn1n[1e3n1]=e^2(e^{-3}-1)\underset{n→∞}{lim}\frac{1}{n}\bigg[\frac{1}{e^{\frac{-3}{n}}-1}\bigg]
=e2(e31)limn(13)[3ne3n1]=e^2(e^{-3}-1)\underset{n→∞}{lim}(\frac{-1}{3})[\frac{\frac{-3}{n}}{e^{\frac{-3}{n}}-1}]
=e2(e31)3limn[3ne3n1]=\frac{e^2(e^{-3}-1)}{3}\underset{n→∞}{lim}[\frac{\frac{-3}{n}}{e^{\frac{-3}{n}}-1}]
=e2(e31)3(1)[limnxex1]=\frac{-e^2(e^{-3}-1)}{3}(1)\,\,\,\,\, [\underset{n→∞}{lim}\frac{x}{e^x-1}]
=e1+e23=\frac{-e^{-1}+e^2}{3}
=13(e21e)=\frac{1}{3}(e^2-\frac{1}{e})