Question
Mathematics Question on integral
Evaluate ∫01e2−3xdx as a limit of a sum.
Answer
The correct answer is:=31(e2−e1)
Let I=∫01e2−3xdx
It is known that,
∫abƒ(x)dx=(b−a)n→∞limn1[ƒ(a)+ƒ(a+h)+...+ƒ(a+(n−1)h)]
Where,h=nb−a
Here,a=0,b=1,and ƒ(x)=e2−3x
⇒h=n1−0=n1
∴∫01e2−3xdx=(1−0)n→∞lim[ƒ(0)+ƒ(0+h)+...+ƒ(0+(n−1)h)]
=n→∞lim[e2+e2−3h+...e2−3(n−1)h]
=n→∞limn1[e2[1+e−3h+e−6h+e−9h+...e−3(n−1)h]]
=n→∞limn1[1−(e−3h)e2[1−(e−3h)n]]
=n→∞limn1[e2(1−en−3)(1−e−3)]
=e2(e−3−1)n→∞limn1[en−3−11]
=e2(e−3−1)n→∞lim(3−1)[en−3−1n−3]
=3e2(e−3−1)n→∞lim[en−3−1n−3]
=3−e2(e−3−1)(1)[n→∞limex−1x]
=3−e−1+e2
=31(e2−e1)