Solveeit Logo

Question

Physics Question on Gravitation

Escape velocity of a body from earth is 11.2 km/s. If the radius of a planet be one-third the radius of earth and mass be one-sixth that of earth, the escape velocity from the planet is:

A

11.2 km/s

B

8.4 km/s

C

4.2 km/s

D

7.9 km/s

Answer

7.9 km/s

Explanation

Solution

Solution: The escape velocity VeV_e from a celestial body is given by the formula:

Ve=2GMR,V_e = \sqrt{\frac{2GM}{R}},

where:
- GG is the gravitational constant,
- MM is the mass of the body,
- RR is the radius of the body.

Given Values for Earth: Escape velocity from Earth, Ve,earth=11.2km/sV_{e,\text{earth}} = 11.2 \, \text{km/s}. For Earth, let:
Mass MeM_e and radius ReR_e be constants.

For the Planet: The radius of the planet Rp=13ReR_p = \frac{1}{3} R_e. The mass of the planet Mp=16MeM_p = \frac{1}{6} M_e.

Calculating Escape Velocity for the Planet: Substituting the values into the escape velocity formula:

Ve,planet=2G(16Me)13Re.V_{e,\text{planet}} = \sqrt{\frac{2G \left( \frac{1}{6} M_e \right)}{\frac{1}{3} R_e}}.

Simplifying the expression:

Ve,planet=2GMeRe×16×3.V_{e,\text{planet}} = \sqrt{\frac{2GM_e}{R_e}} \times \sqrt{\frac{1}{6} \times 3}.

Thus, it can be expressed as:

Ve,planet=Ve,earth×12.V_{e,\text{planet}} = V_{e,\text{earth}} \times \sqrt{\frac{1}{2}}.

Substituting Ve,earth=11.2km/sV_{e,\text{earth}} = 11.2 \, \text{km/s}:

Ve,planet=11.2×12=11.2×0.70717.9km/s.V_{e,\text{planet}} = 11.2 \times \sqrt{\frac{1}{2}} = 11.2 \times 0.7071 \approx 7.9 \, \text{km/s}.

Thus, the escape velocity from the planet is: 7.9 km/s.